DOI QR코드

DOI QR Code

ON THE COMPUTATION OF THE NON-PERIODIC AUTOCORRELATION FUNCTION OF TWO TERNARY SEQUENCES AND ITS RELATED COMPLEXITY ANALYSIS

  • Koukouvinos, Christos (Department of Mathematics, National Technical University of Athens) ;
  • Simos, Dimitris E. (Department of Mathematics, National Technical University of Athens)
  • Received : 2010.06.27
  • Accepted : 2010.10.28
  • Published : 2011.05.30

Abstract

We establish a new formalism of the non-periodic autocorrelation function (NPAF) of two sequences, which is suitable for the computation of the NPAF of any two sequences. It is shown, that this encoding of NPAF is efficient for sequences of small weight. In particular, the check for two sequences of length n having weight w to have zero NPAF can be decided in $O(n+w^2{\log}w)$. For n > w^2{\log}w$, the complexity is O(n) thus we cannot expect asymptotically faster algorithms.

Keywords

References

  1. K. T. Arasu and T. A. Gulliver, Self-dual codes over $F_p $ and weighing matrices, IEEE Trans. Inform. Theory 47 (2001), 2051-2055. https://doi.org/10.1109/18.930940
  2. S. Boyd, Multitone signals with low crest factor, IEEE Trans. Circuits Systems 33 (1986), 1018-1022. https://doi.org/10.1109/TCS.1986.1085837
  3. T. J. Cox, J. A. S. Angus and P. DAntonio, Ternary and quadriphase sequence diffusers, J. Acoust. Soc. Am. 119 (2006), 310-319. https://doi.org/10.1121/1.2139632
  4. R. Craigen, Weighing matrices and conference matrices, in The CRC Handbook of Com- binatorial Designs, (Eds. C. J. Colbourn and J. H. Dinitz), CRC Press, Boca Raton, Fla., 1996, pp. 496-504.
  5. R. Craigen and H. Kharaghani, Orthogonal designs, in Handbook of Combinatorial Designs, (Eds. C.J. Colbourn and J.H. Dinitz), 2nd ed. CRC Press, Boca Raton, Fla., 2006, pp. 290- 306.
  6. R. Craigen and C. Koukouvinos, A theory of ternary complementary pairs, J. Combin. Theory Ser. A 96 (2001), 358-375. https://doi.org/10.1006/jcta.2001.3189
  7. R. Craigen, S. Georgiou, W. Gibson and C. Koukouvinos, Further explorations into ternary complementary pairs, J. Combin. Theory Ser. A 113 (2006), 952-965. https://doi.org/10.1016/j.jcta.2005.07.013
  8. E. Fenimore and T. Cannon, Coded aperture imaging with uniformly redundant arrays, Appl. Optics 17 (1978), 337-347. https://doi.org/10.1364/AO.17.000337
  9. A. V. Geramita and J. Seberry, Orthogonal designs. Quadratic forms and Hadamard ma- trices, Lecture Notes in Pure and Applied Mathematics, 45, Marcel Dekker Inc. New York, 1979.
  10. S. Golomb and H. Taylor, Two-dimensional synchronization patterns for minimum ambi- guity, IEEE Trans. Inform. Theory 28 (1982), 600-604. https://doi.org/10.1109/TIT.1982.1056526
  11. D. H. Greene and D. E. Knuth, Mathematics for the analysis of algorithms, 3rd edition, Modern Birkhauser Classics, Birkhauser, Boston, 2008.
  12. J. Hersheya and R. Yarlagadda, Two-dimensional synchronisation, Electron. Lett. 19 (1983), 801-803. https://doi.org/10.1049/el:19830546
  13. H. Hotelling, Some improvements in weighing and other experimental techniques, Ann. Math. Stat. 16 (1944), 294-300.
  14. H. Kharaghani and C. Koukouvinos, Complementary, Base and Turyn Sequences, in Hand- book of Combinatorial Designs, (Eds. C.J. Colbourn and J.H. Dinitz), 2nd ed. Chapman and Hall/CRC Press, Boca Raton, Fla., 2006, pp. 317-321.
  15. D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 3rd edition, Addison- Wesley Series in Computer Science and Information Processing, Addison- Wesley Publishing Co., Mass.- London-Don Mills, 1998.
  16. D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching, 3rd edition, Addison- Wesley Series in Computer Science and Information Processing, Addison- Wesley Publishing Co., Mass.- London-Don Mills, 1998.
  17. D. E. Knuth, Selected Papers on Analysis of Algorithms, Centre for the Study of Language and Information - CSLI Lecture Notes, no. 102, Stanford, California, 2000.
  18. C. Koukouvinos, Sequences with Zero Autocorrelation, in The CRC Handbook of Combi- natorial Designs, (Eds. C. J. Colbourn and J. H. Dinitz), CRC Press, 1996, pp. 452-456.
  19. C. Koukouvinos and J. Seberry, Weighing matrices and their applications, J. Statist. Plann. Inference 62 (1997), 91-101. https://doi.org/10.1016/S0378-3758(96)00172-3
  20. C. Koukouvinos and J. Seberry, New weighing matrices and orthogonal designs constructed using two sequences with zero autocorrelation function-a review, J. Statist. Plann. Inference 81 (1999), 153-182. https://doi.org/10.1016/S0378-3758(99)00006-3
  21. D. Raghavarao, Constructions and Combinatorial Problems in Design of Experiments, Wiley Series in Probability and Statistics, John Wiley and Sons, New York-Sydney-London, 1971.
  22. G. Weathers and E. M. Holiday, Group-complementary array coding for radar clutter rejection, IEEE Transaction on Aerospace and Electronic Systems 19 (1983), 369-379.
  23. B. Schneier, Applied Cryptography, 2nd edition, John Wiley and Sons, New York, 1996.
  24. J. R. Seberry, B. J. Wysocki and T. A. Wysocki, On a use of Golay sequences for asynchro- nous DS CDMA applications, In Advanced Digital Signal Processing for Communication Systems, chapter 9, pp. 182-196, Kluwer Academic Pulbishers, Boston, Dordrecht, London, 2002.
  25. J. SeberryWallis, On supplementary difference sets, Aequationes Math. 8 (1972), 242-257. https://doi.org/10.1007/BF01844498
  26. J. Seberry Wallis, A note on supplementary difference sets, Aequationes Math. 10 (1974), 46-49. https://doi.org/10.1007/BF01834780
  27. M. Sipser, Introduction to the Theory of Computation, 2nd edition, International edition, Thomson Learning Inc., Boston, Massachusetts, 2006.
  28. D. R. Stinson, Cryptography : Theory and Practice, CRC Press on Discrete Mathematics and Its Applications, Boca Raton, 1995.