Measurements of $T_1$-and $T_2$-relaxation Time Changes According to the Morphological Characteristics of Gold Nanoparticles (GNPs)

금 나노 입자의 형태적 특성에 따른 $T_1$, $T_2$ 이완 시간의 변화 측정

  • Jang, M.Y. (Biomedical Engineering, Inje University) ;
  • Han, Y.H. (Biomedical Engineering, Inje University) ;
  • Mun, C.W. (Biomedical Engineering, Inje University)
  • Received : 2010.11.05
  • Accepted : 2010.12.27
  • Published : 2011.04.30

Abstract

Purpose : The aim of this study is to measure the typical MR variables such as $T_1$- and $T_2$-relaxation times according to morphological characteristics of gold nanopartides as a preliminary study to perform theragnosis using local heating by gold nanopartides. Materials and Methods : Two types of gold nanoparticles were used. Spheres were synthesized by various methods and stirring speed. Rods were synthesized by adding various concentrations of sphere nanopartides. Gold nanopartides were mixed with 2% agarose gel at 1:1 ratio and then signals were acquired using a 1.5T MRI. For the measurements of $T_1$-and $T_2$-relaxation times, TR and TE were varied, respectively. The results were acquired through $T_1$ and $T_2$ curves based on the intensities of MR image using self-developed software. And Statistical analysis was performed. Results : $T_1$ times were measured 1.86 sec and 2.08 sec for sphere and rod, respectively. On the other hands, $T_2$ times were measured 57 ms and 35.45 ms for sphere and rod. Conclusion : The changes of the MR variables according to the morphological characteristics of the gold nanopartides were confirmed. Optimal MR imaging conditions can be obtained by choosing proper TR and TE according to the type of nanoparticles.

목적 : 본 연구에서는 금 나노 입자를 통한 국소 가열과 MR 온도 영상 기법을 결합한 Theragnosis 개념에 대한 가초연구로 금 나노 입자의 특성 및 제조 조건에 따른 MR 변수의 변화를 연구하였다. 대상 및 방법 : 실험실에서 제조된 구형과 막대형 금 나노 입자를 사용하였다. 구형 입자는 합성방법과 교반속도(stirring speed: rpm)를 변수로 설정하였고, 막대형 입자눈 첨가된 구형 입자의 양을 변수로 하여 조건을 다양화하였다. 금 나노 입자를 2% 아가로즈 젤에 1:1 로 혼합하여 임상용 1.5T MRI 시스템에서 신호를 획득하였고, $T_1$$T_2$ 이완시간의 측정을 위해 TR과 TE를 조절하였다. 획득한 영상의 화소별 신호 강도플 이용하여 제작한 소프트웨어로 $T_1$$T_2$ 이완곡선을 추정하였고, 통계 분석으로 유의성을 검증하였다. 결과 : 구형 입자의 평균 $T_1$ 값은 $1.86{\pm}0.04$초, 막대형은 평균 $2.08{\pm}0.04$초로 막대형이 더 걸게 측정되었고, 반면 평균 $T_2$ 값은 구형과 막대형 각각 $57{\pm}2.4$ ms와 $35.45{\pm}0.1$ ms로 구형 나노 입자에서 더 길게 측정되었다. 결론 : 금 나노 입자의 형태적 특성 및 제조 조건에 따른 MR 영상 변수 $T_1$$T_2$ 이완시간의 변화를 확인하였다. 금 나노 입자를 이용한 MR 영상 연구의 수행 시 금 나노 입자의 형태와 제조 조건에 따른 적절한 TR과 TE로 최적화된 영상을 얻을 수 있을 것으로 기대된다.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. Jun YW, Jang JT, Cheon JW. Nanocrystals and their biomedical applications. Bulletin of the Korean Chemical Society 2006;27(7):961-971 https://doi.org/10.5012/bkcs.2006.27.7.961
  2. Lee JW, Lee IW, Lee JB. Medical Application of Nanomaterials and Prospect. J Clinical Otolaryngol 2009;20:119-126
  3. Jun YW, Choi JS, Cheon JW. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angewandte Chemie 2006;45(21):3414-3439 https://doi.org/10.1002/anie.200503821
  4. Jana NR, Gearheart L, Murphy CJ. Seeding growth for size control of 5-40 nm diameter gold nanoparticle. Langmuir 2001;17(22):6782-6786 https://doi.org/10.1021/la0104323
  5. Park JN, Lee EW, Hwang NM, et al. Onenanometer -scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angewandte Chemie 2005;44(19):2872-2877 https://doi.org/10.1002/anie.200461665
  6. Baughman RH, Zakhidov AA, de Heer W A. Carbon nanotubes the route toward applications. Science 2002;297(5582):787-792 https://doi.org/10.1126/science.1060928
  7. Huang HC, Rege K, Heys JJ. Spatiotemporal temperature distribution and cancer cell death in response to extracellular hyperthermia induced by gold nanorods. American Chemical Society 2010;4(5):2892-2900
  8. Terry BH, Ling T, Yan Z, Matthew NH, Cheng JX, Alexander W. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine (Lond) 2007;2(1):125-132 https://doi.org/10.2217/17435889.2.1.125
  9. Yun HX, Jianmin B, WangJP. High-magnetic-moment multifunctional nanoparticles for nanomedicine applications. J Magnetism and Magnetic Materials 2007;311:131-134 https://doi.org/10.1016/j.jmmm.2006.11.174
  10. Gole A, J. Murchy. Seed-Mediated Synthesis of gold nanorods: role of the size and nature of the Seed. Chem Mater 2004;16:3633-3640 https://doi.org/10.1021/cm0492336
  11. May RA, Stevenson KJ, Vanden. Synthesis of gold and iron oxide nanoparticles and illustration of their optical and magnetic properties. IGERT Summer Teacher Academy, 2007
  12. Jana NR, Geartheart L, Murphy J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 2001;105:4065-4067
  13. M.I.A. Lourakis. A brief description of the Levenberg-Marquardt algorithm implem -entted by levmar, Technical Report. Institute of Computer science, Foundation for Research and Technology, Hellas, 2005
  14. Ahearn TS, Staff RT, Redpath TW, Semple SI. The use of the Levenberg-Marquardt curve-fitting algorithm in pharmacokinetic modeling of DCE-MRI data. Phys Med Biol 2005;50:N85-N92 https://doi.org/10.1088/0031-9155/50/9/N02
  15. Adam J. Schwarz, Tosten Reese, Alessandro Gozzi, Angelo Bifone. Functional MRI using intravascular contrast agents: detrending of the relative cerebrovascular(rCBV) time course. Magn Reson Imaging 2003;21:1191-1200 https://doi.org/10.1016/j.mri.2003.08.020
  16. Stroh A, Zimmer C, Gutzeit C, Jakstadt M, Marschinke F, Jung T, Pilgrimm H, Grune T. Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages. F. Radio. Bio. Med. 2004;36(8):976-984 https://doi.org/10.1016/j.freeradbiomed.2004.01.016
  17. Van Beers BE, Gallez B, Pringot J. Contrast-enhanced MR imaging of the liver. Radiology 1997;203:297-306