Water-Fat Imaging with Automatic Field Inhomogeneity Correction Using Joint Phase Magnitude Density Function at Low Field MRI

저자장 자기공명영상에서 위상-크기 결합 밀도 함수를 이용한 자동 불균일 자장 보정 물-지방 영상 기법

  • Kim, Pan-Ki (Department af Electrical Engineering, Kwangwaan University) ;
  • Ahn, Chang-Beom (Department af Electrical Engineering, Kwangwaan University)
  • Received : 2010.11.22
  • Accepted : 2011.01.18
  • Published : 2011.04.30

Abstract

Purpose : A new inhomogeneity correction method based on two-point Dixon sequence is proposed to obtain water and fat images at 0.35T, low field magnetic resonance imaging (MRI) system. Materials and Methods : Joint phase-magnitude density function (JPMF) is obtained from the in-phase and out-of-phase images by the two-point Dixon method. The range of the water signal is adjusted from the JPMF, and 3D inhomogeneity map is obtained from the phase of corresponding water volume. The 3D inhomogeneity map is used to correct the inhomogeneity field iteratively. Results : The proposed water-fat imaging method was successfully applied to various organs. The proposed 3D inhomogeneity correction algorithm provides good performances in overall multi-slice images. Conclusion : The proposed water-fat separation method using JPMF is robust to field inhomogeneity. Three dimensional inhomogeneity map and the iterative inhomogeneity correction algorithm improve water and fat imaging substantially.

목적 : 0.35 Teslas의 저자장 자기공명영상 시스템에서 인체 조직의 물 성분 또는 지방 성분의 영상을 얻는데 있어서 주자장의 불균일도를 two-point Dixon 방법을 기반으로 보정하는 새로운 방법을 모색하였다. 대상 및 방법 : Two-point Dixon 방법을 사용하여 물과 지방의 위상이 동상일 때와 역상일 때의 영상들을 얻은 후 그 영상들로부터 위상과 크기의 위상 크기 결합 밀도 함수를 계산하고, 이를 통해 물과 지방의 영역을 분리하여 3차원 볼륨의 물 영역에서의 주자장의 불균일도 패턴을 분석하고 이를 반복적으로 보정하여 주자장의 불균일도를 개선하였다. 결과 : 제안한 영상 기법으로 인체의 여러 부위에서 주자장의 불균일도를 보정한 물과 지방 영상을 얻을 수 있었다. 삼차원 보정을 통하여 멀티 슬라이스 전체 영상에서 균일하게 물 또는 지방만의 영상을 얻을 수 있었다. 결론 : 위상-크기 결합 밀도 함수를 통하여 물과 지방의 영역을 분리할 수 있었고, 이를 이용하여 자장의 불균일도를 분석하고 보정할 수 있었다. 제안한 방법을 통해 주자장의 불균일도가 월등히 개선된 물 또는 지방 영상을 얻을 수 있었다.

Keywords

References

  1. Emmanuelle M, Javier B, Glyn J, Jean R, Xavier M, Anne C. Fat suppression in MR imaging: teehniques and pitfalls. Radiographics 1999;19:373-382 https://doi.org/10.1148/radiographics.19.2.g99mr03373
  2. Hussain HK, Chenevert TL, Londy FJ, et al. Hepatic fat fraction: MR imaging for quantitative measurement and display - early experience. Radiology 2005;236:1048-1055
  3. Guiu B, Petit JM, Loffroy R, et al. Quantification of liver fat content: comparison of triple-echo chemical shift gardient-echo imaging and in vivo proton MR spectroscopy. Radiology 2009;250:95-102 https://doi.org/10.1148/radiol.2493080217
  4. O' Regan DP, Callaghan MF, Wylezinska-Arridge M, et al. Liver fat content and $T2^{ast}$: simultaneous measurement by using breath-hold multiecho MR imaging at 3T-feasibility. Radiology 2008;247:550-557 https://doi.org/10.1148/radiol.2472070880
  5. Kellman P, Hernando D, Shah S, et al. Multiecho dixon fat and water separation method for detecting fibrofatty infiltration in the myocardium. Magn Reson Med 2009;61:215-221 https://doi.org/10.1002/mrm.21657
  6. Hu HH, Kim HW, Nayak KS, et al. Comparison of fat-water MRI and single-voxel MRS in the assessment of hepatic and pancreatic fat fractions in humans. Obesity 2010;18:841-847. https://doi.org/10.1038/oby.2009.352
  7. Keller PJ, Hunter WW Jr, Schmalbrock P. Multisection fat-water imaging with ehemical shift selection presaturation. Radiology 1987; 164:539-541 https://doi.org/10.1148/radiology.164.2.3602398
  8. Bydder GM, Young IR. MR imaging: clinical use of the inversion-recovery sequence. J Comput Assist Tomogr 1985;9:659-675. https://doi.org/10.1097/00004728-198507010-00002
  9. Dixon WT. Simple proton spectroscopic imaging. Radiology 1984;153:189-194
  10. Glover GH, Schneider E. Three-point Dixon Technique for true water/fat decomposition with B0 inhomogeneity correction. Magn Reson Med 1991;18:371-383 https://doi.org/10.1002/mrm.1910180211
  11. Glover GH. Multipoint dixon technique for true water and fat proton and susceptibility imaging. Magn Reson Med 1991;5:512-530
  12. Skinner TE, Glover GH. An extended two-point Dixon algorithm for calculating separate water, fat, and B0 images. Magn Reson Med 1997;37:628-630 https://doi.org/10.1002/mrm.1910370426
  13. Coombs BD, Szumowski J, Coshow W. Two-points Dixon technique for water-fat signal decomposition with B0 inhomogeneity correction. Magn Reson Med 1997;38:884-889. https://doi.org/10.1002/mrm.1910380606
  14. Ghiglia DC, Pritt MD. Two-dimensional phase unwrapping: theory, algorithm, and software. New York: John Wiley & Sons; 1998
  15. Ma J. Breath-hold water and fat imaging using a dual-echo two-point Dixon technique with an efficient and robust phase-correction algorithm. Magn Reson Med 2005;52:425-419
  16. Schmidt MA, Fraser KM. Two-point Dixon fat-water separation: improving reliability and accuracy in phase correction algorithm. JMRI 2008;27: 1122-1129. https://doi.org/10.1002/jmri.21310
  17. Pruessmann KP, et al. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952-962 https://doi.org/10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
  18. Ahn CB, Jo JM, Cho ZH. Magnetic field homogeneity correction algorithm using pseudoinversion formula for NMR imaging. Rev Sc. Instrum 1986;57(4):683-688 https://doi.org/10.1063/1.1138890
  19. Irarrazabal P, Meyer CH, Nishimura DG, Macovski A. Inhomogeneity correction using an estimated linear field map. Magn Reson Med 1996;35:278-282 https://doi.org/10.1002/mrm.1910350221
  20. Bernstein MA, King KF, Zhou XJ. Handbook of MRI Pulse Sequence. New York: Elsevier; 2004
  21. Reeder SB, Wen Z, Yu H, et al. Multicoil Dixon chemical species separation with an iterative least-squares estimation method. Magn Reson Med 2004;51:35-45 https://doi.org/10.1002/mrm.10675