DOI QR코드

DOI QR Code

A Vehicle Communication Routing Algorithm Considering Road Characteristics and 2-Hop Neighbors in Urban Areas

도심 환경에서 도로의 특성과 2-홉 이웃 노드를 고려한 차량 통신 라우팅 알고리즘

  • 류민우 (광운대학교 컴퓨터과학과) ;
  • 차시호 (청운대학교 멀티미디어학과) ;
  • 조국현 (광운대학교 컴퓨터과학과)
  • Received : 2011.01.08
  • Accepted : 2011.04.26
  • Published : 2011.05.31

Abstract

V2V (Vehicle-to-Vehicle) is a special kind of VANET (Vehicular Ad-hoc Network), which has high mobility and frequent topology changes and causes the link breakage problem. To resolve this problem, geographic routing protocols such as greedy forwarding are proposed. However, the greedy forwarding approach selects the node closest to the destination node as the transfer node within the transmission range so that it may cause many problems owing to many intersections and many changes in vehicular traffic in urban areas. The paper proposes a greedy perimeter urban routing (GPUR) algorithm considering the presence of 2-hop neighbor nodes and the road characteristics. Simulation results using ns-2 reveal that the proposed GPUR algorithm significantly reduces the routing error problem and the probability of local maximum than the existing routing protocols.

V2V(Vehicle-to-Vehicle)는 VANET(Vehicular Ad-hoc Network)의 한 형태로 높은 이동성과 빈번한 토폴로지 변화로 인하여 링크 단절 문제를 야기 시킨다. 이러한 문제를 해결하기 위하여 그리디 포워딩 (greedy forwarding)과 같은 지리 기반 라우팅 프로토콜이 제안되었다. 그러나 그리디 포워딩 방식은 자신의 전송 범위 안에 속해 있는 노드들 중 목적지 노드와 가장 가까운 노드를 다음 전송 노드로 선정하기 때문에 교차로 및 차량의 진행 변화가 많은 도심 환경에서는 많은 문제점이 발생한다. 이러한 문제를 해결하기 위하여 본 논문에서는 2-hop 이웃 노드의 유/무와 도로의 특성을 고려한 GPUR(Greedy Perimeter Urban Routing) 알고리즘을 제안한다. ns-2를 사용한 성능 평가 결과 도심 환경에서 GPUR 알고리즘이 기존의 라우팅 프로토콜에 비해 경로 설정 오류 문제와 로컬 맥시멈(local maximum)에 직면할 확률을 현저히 감소시킴을 확인하였다.

Keywords

References

  1. Wireless Access for Vehicular Environment, http://www.standards.its.dot.gov/fact_sheet.asp.
  2. ESTI, "Intelligent Transport Systems", http://www.etsi.org/WebSite/technologies/IntelligentTransportSystems.aspx.
  3. J. J. Blum, A. Eskandarian, L. J. Hoffman, "Challenges of inter-vehicle ad hoc networks", IEEE Transactions on Intelligent Transportation Systems, Vol.5, No.4, pp.347-351, Dec. 2004. https://doi.org/10.1109/TITS.2004.838218
  4. IEEE P1609.4, "Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE) - Multi-Channel Operation", 2006.
  5. IETF, "Ad Hoc On-Demand Distance Vector Routing", RFC 3561, July 2003.
  6. IETF, "Optimized Link State Routing", RFC 3628, Oct. 2003.
  7. IETF, "The Dynamic Source Routing Protocol for Mobile Ad Hoc Network for IPv4", RFC 4728, Feb. 2007
  8. B. Karp and H. T. Kung, "GPSR : Greedy Perimeter Stateless Routing for Wireless Network", in proc. of ACM/IEEE MOBICOM 2000, pp.243-254, Aug. 2000.
  9. G. Liu, B.-S. Lee, B.-C. Seet, C. H. Foh, K. J. Wong, and K.-K. Lee, "A routing strategy for metropolis vehicular communications", in proc. of International Conference on Information Networking (ICOIN), pp.134-143, 2004.
  10. X. Xing, C. Lu, R. Pless et al, "On Greedy Geographic Routing Algorithms in Sensing Covered Networks", in proc. of ACM Mobihoc'04, pp.31-42, May. 2004.
  11. F. Kuhn, R. Wattenhofer, et al., "Asymptotically Optimal Geometric Mobile Ad-hoc Routing", in proc. of the 6th ACM DIALM'02, pp.24-33, 2002.
  12. C. Lochert, M. Mauve, H. Fler, H. Hartenstein. "Geographic Routing in City Scenarios", ACM SIGMOBILE Mobile Computing and Communications Review (MC2R) Vol.9, No.1, pp.69-72, 2005. https://doi.org/10.1145/1055959.1055970
  13. Min-Woo Ryu, Si-Ho Cha, Kuk-Hyun Cho, "A Routing Prediction Algorithm for Increasing Reliability in VANET", in proc. of the International Conference on Information Networking (ICONI'10), Dec. 2010.

Cited by

  1. Grid-Based Predictive Geographical Routing for Inter-Vehicle Communication in Urban Areas vol.8, pp.3, 2012, https://doi.org/10.1155/2012/819497
  2. Wagon Next Point Routing Protocol (WNPRP) in VANET vol.90, pp.2, 2016, https://doi.org/10.1007/s11277-016-3236-6