DOI QR코드

DOI QR Code

Combustion Properties of Ethylene-propylene diene monomer/polypropylene/Clay Nanocomposites Based on EDPM/PP

EPDM/PP에 바탕을 둔 에칠렌-프로필렌 디엔 모노머/폴리프로필렌/클레이 나노복합체의 연소특성

  • Chung, Yeong-Jin (Department of Fire Protection Engineering, Kangwon National University)
  • 정영진 (강원대학교 소방방재공학과)
  • Received : 2011.11.12
  • Accepted : 2011.12.08
  • Published : 2011.12.30

Abstract

Effects of ethylene-propylene diene monomer (EPDM)/polypropylene (PP), zinc oxide, stearic acid, and clay on the combustive properties based on EDPM/PP were investigated. The EDPM/PP/clay nanocomposites was compounded to prepare specimen for combustive analysis by cone calorimeter (ISO 5660-1). It was found that the specific mass loss rate (SMLR) in the nanocomposites decreased due to the fire resistance compared with unfilled EDPM/PP, while the nanocomposites showed the higher total heat release (THR), higher CO production release, and higher specific extinction area (SEA) than those of virgin EPDM/PP. The stearic acid for softening ruber increased the THR and amount of smoke by itself, combustible.

Keywords

References

  1. G. L. Nelson, "Fire and Polymers", American Chemical Society, Washington DC. (1990).
  2. M. Lewis, S. M. Altas, and E. M. Pearce, "Flame-Retardant Polymer Materials", Plenum Press, New York (1975).
  3. A. Usuki, M. Kawasumi, Y. Kojima, A. Okada, T. Kurauchi, and O. kamjngato, Swelling behavior of montmorillonite cation exchanged for $\omega$-amino acids by $\varepsilon$-caprolactam J. Mater. Res., 8, 1174 (1993). https://doi.org/10.1557/JMR.1993.1174
  4. P. B. Massersmith and E. P. Giannelis, Synthesis and Barrier Properties of Poly ($\varepsilon$-caprolactone)-Layered Silicate Nanocomposites, J. Polym sci, : Part A : Polym Chem., 33, 1047 (1995).
  5. Z. Wang and T. J. Piannavaia, Nanolayer Reinforcement of Elastomeric Polyurethane, Chem Mater., 10, 3769 (1998). https://doi.org/10.1021/cm980448n
  6. R. Krishnamoorti and E. P. Giannelis, Rheology of End-Tethered Polymer Layered Silicate Nanocomposites, Macromolecules, 30, 4097 (1997). https://doi.org/10.1021/ma960550a
  7. A. Oya and Y. Kurokawa, Factors controlling mechanical properties of clay mineral/polypropylene nanocomposites, J. Mater. Sci., 35, 1045 (2000). https://doi.org/10.1023/A:1004773222849
  8. P. B. Masscrsmith and E. P. Giannelis, Synthesis and Characterization of Layered Silicate-Epoxy Nanocomposites, Chem Mater., 6, 1719 (1994). https://doi.org/10.1021/cm00046a026
  9. T. J. Pinnavaia, Intercalated Clay Catalysts, Science, 220, 365 (1983). https://doi.org/10.1126/science.220.4595.365
  10. V. Babrauskas, "New Technology to Reduce Fire Losses and Costs", eds. S. J. Grayson and D. A. Smith, Elsevier Appied Science Publisher, London, UK. (1986).
  11. M. M. Hirschler, "Thermal Decomposition and Chemical Composition", American Chemical Society Symposium Series 797 (2001).
  12. ISO 5660-1, "Reaction-to-Fire Tests - Heat Release, Smoke Production and Mass Loss Rate - Part 1: Heat Release Rate (Cone Calorimeter Method)", Genever (2002).
  13. Y. C. Yang and Y. W. Chang, Fracture Behavior of EPDM/Clay Composite, Applied Chemistry, 4(2), 85 (2000).
  14. Y. J. Chung, Combustive Properties of Polyurethane/polypropylene/ Clay Nanocomposites, J. of Korean Institute of Fire Sci. & Eng., 25(6), in press (2011).
  15. Y. J. Chung, Comparison of Combustion Properties of Native Wood Species Used for Fire Pots in Korea, J. Ind. Eng. Chem. 16, 15 (2010). doi: 10.1016/j.jiec.2010.01.031
  16. F. M. Pearce, Y. P. Khanna, and D. Raucher, "Thermal Analysis in Polymer flammability", Chap. 8, Thermal Characterization of Polymeric Materials, Academic Press, New York, U.S.A. (1981).
  17. V. Babrauskas, Development of Cone Calorimeter-A Bench-Scale Heat Release Rate Apparatus Based on Oxygen Consumption, Fire and Materials, 8(2), 81 (1984). doi: 1002/fam.810080206. https://doi.org/10.1002/fam.810080206
  18. V. Babrauskas and S. J. Grayson, "Heat Release in Fires", E & FN Spon (Chapman and Hall), London, UK. (1992).
  19. N. N. Greenwood and A. Earnshow, "Chemistry of Elements", Butterworth-Heinemann, Oxford (1997). ISBN 0080379419
  20. M. M. Hirscher, Reduction of smoke formation from and flammability of thermoplastic polymers by metal oxides, POLYMER, 25(March), 405 (1984). https://doi.org/10.1016/0032-3861(84)90296-9
  21. J. Zhang, D. D. Jiang, and C. A. Wilkie, Thermal and Flame Properties of Polyethylene and Polypropylene Nanocomposites Based on an Oligomerically-modified Clay, Polm. Degrad. Stab., 91, 298 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.05.006
  22. J. G. Quintire, "Principles of Fire Behavior", Chap. 5, Cengage Learning, Delmar, U.S.A. (1998).
  23. Y. J. Chung, Comparison of Combustion Properties of Pinus Rigida, Castanea Sativa, and Zelkova Serrata, J. of Korean Instiute of Fire Sci. & Eng. 23(4), 73 (2010).