Numerical Simulation of a 100 $MW_e$-scale Wall-fired Boiler for Demonstration of Oxy-coal Combustion

전산유동해석을 이용한 100 $MW_e$급 석탄 순산소 연소 실증 보일러의 설계 및 운전조건 평가

  • 채태영 (성균관대학교 기계공학부) ;
  • 박상현 (성균관대학교 기계공학부) ;
  • 홍재현 (성균관대학교 기계공학부) ;
  • 양원 (한국생산기술연구원 에너지시스템연구그룹) ;
  • 이상훈 (한국에너지기술평가원 신재생에너지팀) ;
  • 류창국 (성균관대학교 기계공학부)
  • Received : 2010.12.16
  • Accepted : 2011.02.28
  • Published : 2011.06.30

Abstract

As one of the main technologies for carbon capture and storage in power generation, oxy-coal combustion is being developed for field demonstration in Korea. This study presents the results of numerical simulation for combustion in a single-wall-fired 100 $MW_e$-scale boiler proposed for the initial design of the demonstration plant. Using a commercial CFD code, the detailed combustion, flow and heat transfer characteristics were assessed both for air-mode and oxy-mode combustion. The results show that stable combustion can be achieved in the dual mode operation with the current boiler configuration. However, the differences in the flow pattern and heat transfer between the two combustion modes need to be considered in the design and operation which is mainly due to the larger density and specific heat of $CO_2$ compared to $N_2$. Further development of the boiler design is required using improved numerical modeling for radiative heat transfer and combustion.

Keywords

References

  1. Buhre, B.J.P., Elliott, L.K., Sheng, C.D., Gupta, R.P., Wall, T.F., "Oxy-fuel combustion technology for coal-fired power generation", Progress in Energy and Combustion Science, Vol. 31, 2005, pp. 283- 307 https://doi.org/10.1016/j.pecs.2005.07.001
  2. Wall, T., Liu, Y., Sperob., C. et al., "An overview on oxyfuel coal combustion: state of the art research and technology development", Chemical Engineering Research and Design, Vol. 87, 1998, pp. 1003-1016
  3. Rathnam, R.K., Elliott, L.K., Wall, T.F., Liu, Y., Moghtaderi, B., "Differences in reactivity of pulverised coal in air ($O_2/N_2$) and oxy-fuel ($O_2/CO_2$) conditions", Fuel Processing Technology, Vol. 90, 2009, pp. 797-802
  4. Sarofim, A., "Oxy-fuel combustion: progress and remaining issues", 2nd Workshop of IEAGHG International Oxy-Fuel Combustion Network, Windsor, CT, USA, January, 2007
  5. Khare, S., Wall, T., Gupta, R., Elliott, L., Buhre, B.J.P., "Retrofitting of air-fired pf plant to oxyfuel: heat transfer impacts for the furnace and convective pass, and associated oxygen production requirements", 5th Asia-Pacific conference on combustion, Adelaide, 17-20 July 2005
  6. Hjärtstam, S., Andersson, K., Johnsson, F., Leckner, B., "Combustion characteristics of lignitefired oxy-fuel flames", Fuel, Vol. 88, 2009, pp. 2216-2224 https://doi.org/10.1016/j.fuel.2009.05.011
  7. Chui, E.H., Majeski, A.J., Douglas, M.A., Tan, Y., Thambimuthu, K.V., "Numerical investigation of oxy-coal combustion to evaluate burner and combustor design concepts", Energy, Vol. 29, 2004, pp. 1285-1296 https://doi.org/10.1016/j.energy.2004.03.102
  8. Toporov, D., Bocian, P., Heil, P., Kellermann, A., Stadler, H., Tschunko, S., Forster, M., Kneer, R., "Detailed investigation of a pulverized fuel swirl flame in $CO_2/O_2 $atmosphere", Combustion and Flame, Vol. 155, 2008, pp. 605-618 https://doi.org/10.1016/j.combustflame.2008.05.008
  9. Smart, J., Lu, G., Yan, Y., Riley, G., "Characterisation of an oxy-coal flame through digital imaging", Combustion and Flame, Vol. 157, 2010, pp. 1132-1139 https://doi.org/10.1016/j.combustflame.2009.10.017
  10. Smart, J.P, O'Nions, P., Riley, G.S., "Radiation and convective heat transfer, and burnout in oxycoal combustion", Fuel, Vol. 89, 2010, 2468-2476 https://doi.org/10.1016/j.fuel.2010.03.048
  11. Beer, J.M. and N.A. Chigier, "Combustion Aerodynamics", Applied Science Publishers Ltd., 1972
  12. Fluent Inc. Fluent 6.3 user's guide, Lebanon, New Hampshire, USA, 2006
  13. 채태영, 박상현, 홍재현, 예인수, 양원, 류창국, "석탄 순산소 연소 해석을 위한 전산해석 모델평가", 한국연소학회 2010 춘계학술대회
  14. Smith, T.F., Shen, Z.F., and Friedman, J.N., "Evaluation of coefficients for the weighted sum of gray gases model", J. Heat Transfer, Vol. 104, 1982, pp. 602-608
  15. Coppalle, A., and Vervisch, P., "The total emissivities of high-temperature flames", Combustion and Flame, Vol. 49, 1983, pp. 101-108 https://doi.org/10.1016/0010-2180(83)90154-2
  16. Jones, W.P., and Lindstedt, R.P., "Global reaction schemes for hydrocarbon combustion", Combustion and Flame, Vol. 73, 1988, pp. 233-249 https://doi.org/10.1016/0010-2180(88)90021-1
  17. Charles K. Westbrook, Frederick L. Dryer. "Chemical kinetic modeling of hydrocarbon combustion", Progress in Energy and Combustion Science, Vol. 10, 1984, pp. 1-57 https://doi.org/10.1016/0360-1285(84)90118-7
  18. Wen, C.Y. and Chaung, T.Z., "Entrainment coal gasification modeling", Industrial and engineering chemistry process design and development, Vol. 18, 1979, pp. 684-695 https://doi.org/10.1021/i260072a020
  19. Dutta, S. and Wen, C.Y., "Reactivity of coal and char. 1. in carbon dioxide atmosphere", Industrial and engineering chemistry process design and development, Vol. 16, 1977, pp. 20-30 https://doi.org/10.1021/i260061a004
  20. Dobner, S., "Modelling of entrained bed gasification: the issues", EPRI, Palo Alto, CA, 1976
  21. Johansson, R., Andersson, K., Leckner, B., Thunman, H., "Models for gaseous radiative heat transfer applied to oxy-fuel conditions in boilers", Int. J. Heat Mass Transfer, Vol. 53, 2010, pp. 220- 230 https://doi.org/10.1016/j.ijheatmasstransfer.2009.09.039
  22. Yin, C., Johansen, L.C.R., Rosendahl, L.A., Kær, S.K., "New weighted sum of gray gases model applicable to computational fluid dynamics (CFD) modeling of oxy-fuel combustion: derivation, validation, and implementation", Energy Fuels, 2011, in press
  23. Krishnamoorthy, G, Sami, M., Orsino, S., Perera, A., Shahnam, M., Huckaby, E.D., "Radiation modeling in oxy-fuel combustion scenarios", Int. J. Comp. Fluid Dynamics, 24(3-4), 2010, pp. 69-82 https://doi.org/10.1080/10618562.2010.485567