DOI QR코드

DOI QR Code

Synthesis of LiCoO2 Powders using Recycled Cobalt Precursors from Waste WC-Co Hard Metal

폐 WC-Co계 초경합금에서 추출된 코발트 재생 원료를 이용한 LiCoO2 입자 합성 연구

  • Yang, Hee-Seung (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Pee, Jae-Hwan (Ceramicware Technology Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Yoo-Jin (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
  • 양희승 (한국세라믹기술원 엔지니어링 세라믹센터) ;
  • 피재환 (한국세라믹기술원 도자기술센터) ;
  • 김유진 (한국세라믹기술원 엔지니어링 세라믹센터)
  • Received : 2011.04.08
  • Accepted : 2011.05.24
  • Published : 2011.06.28

Abstract

[ $LiCoO_2$ ] a cathode material for lithium rechargeable batteries, was prepared using recycled $Co_3O_4$. First, the cobalt hydroxide powders were separated from waste WC-Co hard metal with acid-base chemical treatment, and then the impurities were eliminated by centrifuge method. Subsequently, $Co_3O_4$ powders were prepared by thermal treatment of resulting $Co(OH)_2$. By adding a certain amount of $Li_2CO_3$ and $LiOH{\cdot}H_2O$, the $LiCoO_2$ was obtained by sintering for 10 h in air at $800^{\circ}C$. The synthesized $LiCoO_2$ particles were characterized by X-ray diffraction (XRD) and Scanning Electron Microscope (SEM) analysis.

Keywords

References

  1. T. J. Chung, S. Y. Ahn and Y. K. Paek: J. Kor. Ceram. Soc., 42 (2005) 171. https://doi.org/10.4191/KCERS.2005.42.3.171
  2. S. Venkateswaran, W. D. Schubert, B. Lux, M. Ostermann and B. Kieffer: Int. J. Refract. Met. Hard Mater., 14 (1996) 263. https://doi.org/10.1016/0263-4368(95)00055-0
  3. T. Madhavi Latha and S. Venkata chalam: Hydrometallurgy, 22 (1989) 353. https://doi.org/10.1016/0304-386X(89)90030-3
  4. S. Hairummisha, G. K. Sendil, J. Prabhakar Rethinaraj, G. N. Srinivasan, P. Adaikkalam and S. Kulandaisamy: Hydrometallurgy, 85 (2007) 67. https://doi.org/10.1016/j.hydromet.2006.08.002
  5. J. H. Pee, Y. J. Kim, N. E. Sung, K. T. Hwang, W. S. Cho and K. J. Kim: J. Kor. Ceram. Soc., 48 (2011) 173. https://doi.org/10.4191/KCERS.2011.48.2.173
  6. J. N. Reimers and J. R. Dahn: J. Electrochem. Soc., 139 (1992) 2091. https://doi.org/10.1149/1.2221184
  7. M. Tabuchi, K Ado, H. Kobayashi, H. Sakaebe, H. Kageyama, C, Masquelier, M. Yonemura, A. Hirano and R. Kanno: J. Mater. Chem., 9 (1999) 199. https://doi.org/10.1039/a805311a
  8. J. M. Tarascon and M, Armand: Nature, 414 (2001) 359. https://doi.org/10.1038/35104644
  9. L. Li, W. H. Meyer, G. Wagner and M. Wohlfahrt-Mehrens: Adv. Mater., 17 (2005) 984. https://doi.org/10.1002/adma.200400695
  10. C. Adorjan, A. Bock, S. Myllymaki, W. D Schubert and K. Kontturi: Int. J. Refract. Met. Hard Mater., 26 (2008) 569. https://doi.org/10.1016/j.ijrmhm.2008.01.004
  11. T. N. Ramesh: J. Solid State Chem., 183 (2010) 1433. https://doi.org/10.1016/j.jssc.2010.04.030
  12. T. Kojima, T. Shimizu, R. Sasai and H. Itoh: J. Mater. Sci., 40 (2005) 5167. https://doi.org/10.1007/s10853-005-4407-0
  13. T. Nakamura and A. Kajiyama: Solid State Ionics, 123 (1999) 95. https://doi.org/10.1016/S0167-2738(99)00114-9
  14. T. Ohzuku, A. Ueda and Nagayama: J. Electrochem. Soc., 140 (1993) 1862. https://doi.org/10.1149/1.2220730
  15. W. Li, J. N. Reimers and J. R. Dahn: Solid State Ionics, 67 (1993) 123. https://doi.org/10.1016/0167-2738(93)90317-V

Cited by

  1. Nanopowders using Electrospinning vol.21, pp.2, 2014, https://doi.org/10.4150/KPMI.2014.21.2.108