DOI QR코드

DOI QR Code

Convection Effects on PGSE-NMR Self-Diffusion Measurements at Low Temperature: Investigation into Sources of Induced Convective Flows

  • Received : 2011.04.22
  • Accepted : 2011.05.03
  • Published : 2011.06.20

Abstract

The effects of convection on the measurement of the diffusion coefficients of liquids by the pulsed gradient spin echo (PGSE) NMR method at low temperature are discussed. To examine the generation of convective flows, we used four different types of sample tubes in the diffusion measurements with temperature variation; a normal 5 mm NMR tube, a Shigemi tube, an ELISE type tube, and a capillary tube. Below room temperature, the calculated diffusion coefficients of chloroform in 5 mm o.d. type tubes increased with decreasing temperature, while those in the capillary tube decreased linearly. The convective flow was found to be significant even at low temperature and it seemed to be mainly induced by the transverse temperature gradient. It was also found that the capillary tube was most appropriate to measure the diffusion coefficients, since its small diameter is effective in suppressing the convective flows at both high and low temperatures.

Keywords

References

  1. Barson, C. A.; Dong, Y. M. Eur. Polymer J. 1990, 26, 329. https://doi.org/10.1016/0014-3057(90)90249-4
  2. Das, H. A. J. Radioanal. Nucl. Chem. 2007, 273, 753. https://doi.org/10.1007/s10967-007-0942-2
  3. Wakeham, W. A. Faraday Symp. Chem. Soc. 1980, 15, 145. https://doi.org/10.1039/fs9801500145
  4. Yu, S. H.; Park, C. K.; Shin, C. B.; Cho, W. I. Bull. Korean Chem. Soc. 2011, 32, 852. https://doi.org/10.5012/bkcs.2011.32.3.852
  5. Logan, J. W.; Sherwood, M. H. Polymer Preprint 2005, 46, 413.
  6. Kurkova, D.; Kriz, J.; Rodriguez-Cabello, J. C.; Arias, F. J. Polymer Int. 2007, 56, 186. https://doi.org/10.1002/pi.2117
  7. Ahn, S.; Kim, E. H.; Lee, C. Bull. Korean Chem. Soc. 2005, 26, 331. https://doi.org/10.5012/bkcs.2005.26.2.331
  8. Staunton, S.; Nye, P. H. J. Soil Sci. 1987, 38, 651. https://doi.org/10.1111/j.1365-2389.1987.tb02162.x
  9. Suarez, S.; Chung, S. H.; Greenbaum, S.; Bajue, S.; Peled, E.; Duvdevani, T. Electrochim. Acta 2003, 48, 4.
  10. Loening, N. M.; Keeler, J. J. Magn. Reson. 1999, 139, 334. https://doi.org/10.1006/jmre.1999.1777
  11. Jerschow, A. J. Magn. Reson. 2000, 145, 125. https://doi.org/10.1006/jmre.2000.2083
  12. Hedin, N.; Furo, I. J. Magn. Reson. 1998, 131, 126. https://doi.org/10.1006/jmre.1997.1352
  13. Johnson, C. S. Prog. Nucl. Magn. Reson. Spectrosc. 1999, 34, 203. https://doi.org/10.1016/S0079-6565(99)00003-5
  14. Lounila, J.; Oikarinen, K.; Ingman, P.; Jokisaari, J. J. Magn. Reson. A 1996, 118, 50. https://doi.org/10.1006/jmra.1996.0008
  15. Sorland, G. H.; Seland, J. G.; Krane, J.; Anthonsen, H. W. J. Magn. Reson. 2000, 142, 323. https://doi.org/10.1006/jmre.1999.1941
  16. Goux, W. J.; Verkruyse, L. A.; Saltert, S. J. J. Magn. Reson. 1990, 88, 609.
  17. Hayamizu, K.; Price, W. S. J. Magn. Reson. 2004, 167, 328. https://doi.org/10.1016/j.jmr.2004.01.006
  18. Martinínez-Viviente, E.; Pregosin, P. S. Helv. Chim. Acta 2003, 86, 2364. https://doi.org/10.1002/hlca.200390190
  19. Wieruszeski, J.-M.; Fritzinger, B.; Hanoulle, X.; Martins, J. C.; Lippens, G. J. Magn. Reson. 2008, 193, 37. https://doi.org/10.1016/j.jmr.2008.04.006
  20. Loening, N. M.; Keeler, J. J. Magn. Reson. 2002, 159, 55. https://doi.org/10.1016/S1090-7807(02)00120-9
  21. Wilson, S. K. Acta Mechanica 1997, 124, 63. https://doi.org/10.1007/BF01213018

Cited by

  1. C-metabolites in tumor cell spheroids using real-time NMR spectroscopy vol.26, pp.5, 2013, https://doi.org/10.1002/nbm.2892
  2. Rapid “Step Capture” of Holes in Chloroform during Pulse Radiolysis vol.117, pp.33, 2013, https://doi.org/10.1021/jp405349u
  3. Pulsed-field gradient nuclear magnetic resonance measurements (PFG NMR) for diffusion ordered spectroscopy (DOSY) mapping vol.142, pp.20, 2017, https://doi.org/10.1039/C7AN01031A
  4. Molecular Interactions and Mechanisms in the 1H NMR Relaxation of Residual CHCl3 in Deuterochloroform Solution of a Two-Chain Ionic Surfactant vol.47, pp.7, 2018, https://doi.org/10.1007/s10953-018-0789-x
  5. Viscosity and Volume Effects on Convective Flows in PGSE-NMR Self-Diffusion Measurements at High Temperature vol.16, pp.2, 2011, https://doi.org/10.6564/jkmrs.2012.16.2.122
  6. Effect of Structure on Transport Properties (Viscosity, Ionic Conductivity, and Self-Diffusion Coefficient) of Aprotic Heterocyclic Anion (AHA) Room Temperature Ionic Liquids. 2. Variation of Alkyl Ch vol.120, pp.25, 2011, https://doi.org/10.1021/acs.jpcb.6b03934
  7. Fast field cycling NMR relaxometry studies of molten and cooled cocoa butter vol.117, pp.7, 2019, https://doi.org/10.1080/00268976.2018.1508784
  8. Self‐Diffusion Coefficients in Solutions of Lithium Bis(fluorosulfonyl)imide with Dimethyl Carbonate and Ethylene Carbonate vol.91, pp.11, 2011, https://doi.org/10.1002/cite.201900040
  9. PFG-NMR and MD Simulation Study of Self-Diffusion Coefficients of Binary and Ternary Mixtures Containing Cyclohexane, Ethanol, Acetone, and Toluene vol.65, pp.2, 2011, https://doi.org/10.1021/acs.jced.9b01016
  10. Ion Dissociation in Ionic Liquids and Ionic Liquid Solutions vol.120, pp.23, 2011, https://doi.org/10.1021/acs.chemrev.0c00373