DOI QR코드

DOI QR Code

Positive Charge-doping on Carbon Nanotube Walls and Anion-directed Tunable Dispersion of the Derivatives

  • Shin, Ueon-Sang (Department of Nanobiomedical Science & WCU Research Center, Dankook University) ;
  • Knowles, Jonathan C. (Department of Nanobiomedical Science & WCU Research Center, Dankook University) ;
  • Kim, Hae-Won (Department of Nanobiomedical Science & WCU Research Center, Dankook University)
  • Received : 2010.10.09
  • Accepted : 2011.03.28
  • Published : 2011.05.20

Abstract

An efficient and novel positive charge-doping on the sidewalls of multi-walled carbon nanotubes has been achieved in the presence of tetrahydrofuran as a dopant and Lewis acidic ionic liquids, [bmim]$Sb_nF_{5n+1}$ (n ${\geq}$ 2; bmim = 1-butyl-3-methylimidazolium), as an activator, leaving air-stable derivatives having positively charged sidewalls and the counter anions, [MWCNT$^{y+}$][SbF$_6^-$]$_y$ (MWCNT = multi-walled carbon nanotube). The derivatization took place very fast in one-pot and under mild reaction conditions. The ionic structure enabled a tunable dissolution of the derivatives in various solvents through anion exchange.

Keywords

References

  1. Iijima, S. Nature 1991, 354, 56. https://doi.org/10.1038/354056a0
  2. Ajayan, P. M. Chem. Rev. 1999, 99, 1787. https://doi.org/10.1021/cr970102g
  3. Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Science 2002, 297, 787. https://doi.org/10.1126/science.1060928
  4. Liu, J.; Rinzler, A. G.; Dai, H.; Hafner, J. H.; Bradley, R. K.; Boul, P. J. et al. Science 1998, 280, 1253. https://doi.org/10.1126/science.280.5367.1253
  5. Wang, Y.; Iqbal, Z.; Mitra, S. J. Am. Chem. Soc. 2006, 128, 95. https://doi.org/10.1021/ja053003q
  6. Kovtyukhova, N. I.; Mallouk, T. E.; Pan, L.; Dickey, E. C. J. Am. Chem. Soc. 2003, 125, 9761. https://doi.org/10.1021/ja0344516
  7. Chen, J.; Hamon, M. A.; Hu, H.; Chen, Y.; Rao, A. M.; Eklund, P. C. et al. Science 1998, 282, 95. https://doi.org/10.1126/science.282.5386.95
  8. Yu, B.; Zhou, F.; Liu, G.; Liang, Y.; Huck, W. T. S.; Liu, W. Chem. Commun. 2006, 2356.
  9. Fagnoni, M.; Profumo, A.; Merli, D.; Dondi, D.; Mustarelli, P.; Quartarone, E. Adv. Mater. 2009, 21, 1.
  10. Penicaud, A.; Poulin, P.; Derre, A.; Anglaret, E.; Petit, P. J. Am. Chem. Soc. 2005, 127, 8. https://doi.org/10.1021/ja0443373
  11. Ramesh, S.; Ericson, L. M.; Davis, V. A.; Saini, R. K.; Kittrell, C. et al. J. Phys. Chem. B 2004, 108, 8794. https://doi.org/10.1021/jp036971t
  12. Rao, A. M.; Eklund, P. C.; Bandow, S.; Thess, A.; Smalley, R. E. Nature 1997, 388, 257. https://doi.org/10.1038/40827
  13. Liu, C. M.; Cao, H. B.; Li, Y. P.; Xu, H. B.; Zhang, Y. Carbon 2006, 44, 2919. https://doi.org/10.1016/j.carbon.2006.05.046
  14. O'Connell, M. J.; Boul, P.; Ericson, L. M.; Huffman, C.; Wang, Y.; Haroz, E. et al. Chem. Phys. Lett. 2001, 342, 265. https://doi.org/10.1016/S0009-2614(01)00490-0
  15. Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; Mclean, R. S.; Lustig, S. R. et al. Nature Mater. 2003, 2, 338. https://doi.org/10.1038/nmat877
  16. Ishibashi, A.; Nakashima, N. Chem. Eur. J. 2006, 12, 7595. https://doi.org/10.1002/chem.200600326
  17. Georgakilas, V.; Bourlinos, A.; Gournis, D.; Tsoufis, T.; Trapalis, C.; Mateo-Alonso, A. et al. J. Am. Chem. Soc. 2008, 130, 8733. https://doi.org/10.1021/ja8002952
  18. Han, S. W.; Oh, S. J.; Tan, L. S.; Baek, J. B. Carbon 2008, 46, 1841. https://doi.org/10.1016/j.carbon.2008.07.026
  19. Bahr, J. L.; Yang, J.; Kosynkin, D. V. M.; Bronikowski, J.; Smalley, R. E.; Tour, J. M. J. Am. Chem. Soc. 2001, 123, 6536. https://doi.org/10.1021/ja010462s
  20. Mickelson, E. T.; Huffman, C. B.; Rinzler, A. G.; Smalley, R. E.; Hauge, R. H.; Margrave, J. L. Chem. Phys. Lett. 1998, 296, 188. https://doi.org/10.1016/S0009-2614(98)01026-4
  21. Aihara, J. J. Phys. Chem. 1994, 98, 9773. https://doi.org/10.1021/j100090a009
  22. Lee, H. H.; Shin, U. S.; Won, J. E.; Kim, H. W. Mater. Lett. 2011, 65, 208. https://doi.org/10.1016/j.matlet.2010.10.012
  23. Lee, H. H.; Shin, U. S.; Jin, G. Z.; Kim, H. W. Bull. Korean Chem. Soc. 2011, 32, 157. https://doi.org/10.5012/bkcs.2011.32.1.157
  24. Shin, U. S.; Yoon, I. K.; Lee, G. S.; Jang, W. C.; Knowles, J. C.; Kim, H. W. J. Tissue Eng. 2011, in press.
  25. Deshmukh, R. R.; Lee, J. W.; Shin, U. S.; Lee, J. Y.; Song, C. E. Angew. Chem. Int. Ed. 2008, 47, 8615. https://doi.org/10.1002/anie.200803850
  26. Choi, D. S.; Kim, J. H.; Shin, U. S.; Deshmukh, R. R.; Song, C. E. Chem. Commun. 2007, 3482.

Cited by

  1. Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction vol.101A, pp.6, 2012, https://doi.org/10.1002/jbm.a.34470
  2. Production of Carbonaceous Materials with Various Lengths in Small Spheroidal Fullerenes and Long CNTs by Tunable Multi-walled Carbon Nanotube Cutting vol.37, pp.10, 2016, https://doi.org/10.1002/bkcs.10876
  3. Ruthenium oxide–carbon-based nanofiller-reinforced conducting polymer nanocomposites and their supercapacitor applications pp.1436-2449, 2019, https://doi.org/10.1007/s00289-018-2492-x
  4. Neurite outgrowth of dorsal root ganglia neurons is enhanced on aligned nanofibrous biopolymer scaffold with carbon nanotube coating vol.501, pp.1, 2011, https://doi.org/10.1016/j.neulet.2011.06.023
  5. Cover BKCS 10/2016 vol.37, pp.10, 2016, https://doi.org/10.1002/bkcs.10515