DOI QR코드

DOI QR Code

Improved Rate Capability of Li/Li3V2(PO4)3 Cell for Advanced Lithium Secondary Battery

  • Lim, Hyun-He (Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Cho, A-Ra (Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Sivakumar, Nagarajan (Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Kim, Woo-Seong (Daejung EM Co. LTD.) ;
  • Yoon, Won-Sub (School of Advanced Materials Engineering, Kookmin University) ;
  • Lee, Yun-Sung (Faculty of Applied Chemical Engineering, Chonnam National University)
  • Received : 2011.02.10
  • Accepted : 2011.03.03
  • Published : 2011.05.20

Abstract

Lithium vanadium phosphate, $Li_3V_2(PO_4)_3$ was prepared by a simple solid state route. It was found that making a fine powder of $Li_3V_2(PO_4)_3$ by the mechanical milling is very effective for increasing the insertion/extraction of lithium from $Li_3V_2(PO_4)_3$ structure. In charge/discharge test, the ball-milled $Li_3V_2(PO_4)_3$ sample exhibited a higher initial discharge capacity of 174 mAh/g in the voltage range of 3.0-4.8 V, compared with pure $Li_3V_2(PO_4)_3$ sample (152 mAh/g). Furthermore, the ball-milled $Li_3V_2(PO_4)_3$ presented not only higher cycle retention rate after 50 cycles, but also better rate capability compared with pure sample in the whole region (0.1-7 C).

Keywords

References

  1. Patoux, S.; Wurm, C.; Morcrette, M.; Rousse, G.; Masquelier, C. J. Power Sources 2003, 119-121, 278. https://doi.org/10.1016/S0378-7753(03)00150-2
  2. Li, Y.; Zhou, Z.; Ren, M.; Gao, X.; Yan, J. Electrochim. Acta 2006, 51, 6498. https://doi.org/10.1016/j.electacta.2006.04.036
  3. Sato, M.; Ohkawa, H.; Yoshida, K.; Saito, M.; Uematsu, K.; Toda, K. Solid State Ionics 2000, 135, 137. https://doi.org/10.1016/S0167-2738(00)00292-7
  4. Morgan, D.; Ceder, G.; Saïdi, M. Y.; Barker, J.; Swoyer, J.; Huang, H.; Adamson, G. J. Power Sources 2003, 119-121, 755. https://doi.org/10.1016/S0378-7753(03)00216-7
  5. Saidi, M. Y.; Barker, J.; Huang, H.; Swoyer, J. L.; Adamson, G. J. Power Sources 2003, 119 -121, 266. https://doi.org/10.1016/S0378-7753(03)00245-3
  6. Fu, P.; Zhao, Y.; Dong, Y.; An, X.; Shen, G. J. Power Sources 2006, 162, 651. https://doi.org/10.1016/j.jpowsour.2006.07.029
  7. Fu, P.; Zhao, Y.; Dong, Y.; An, X.; Shen, G. Electrochim. Acta 2006, 52, 1003. https://doi.org/10.1016/j.electacta.2006.06.039
  8. Huang, H.; Yin, S.-C.; Kerr, T.; Taylor, N.; Nazar, L. F. Adv. Mater. 2002, 14, 1525. https://doi.org/10.1002/1521-4095(20021104)14:21<1525::AID-ADMA1525>3.0.CO;2-3
  9. Ohkawa, H.; Yoshida, K.; Saito, M.; Uematsu, K.; Toda, K.; Sato, M. Chem. Lett. 1999, 28, 1017. https://doi.org/10.1246/cl.1999.1017
  10. Tang, A.; Wang, X.; Yang, S. Mater. Lett. 2008, 62, 3676. https://doi.org/10.1016/j.matlet.2008.04.054
  11. Yin, S. C.; Strobel, P. S.; Grondey, H.; Nazar, L. F. Chem. Mater. 2004, 16, 1456. https://doi.org/10.1021/cm034802f
  12. Zhou, X.; Liu, Y.; Guo, Y. Solid State Commun. 2008, 146, 261. https://doi.org/10.1016/j.ssc.2008.02.015
  13. Zhu, X. J.; Liu, Y. X.; Geng, L. M.; Chen, L. B.; Liu, H. X.; Cao, M. G. Solid State Ionics 2008, 179, 1679. https://doi.org/10.1016/j.ssi.2007.11.025
  14. Zhou, X.; Liu, Y.; Guo, Y. Electrochim. Acta 2009, 54, 2253. https://doi.org/10.1016/j.electacta.2008.10.062
  15. Rui, X. H.; Li, C.; Chen, C. H. Electrochim. Acta 2009, 54, 3374. https://doi.org/10.1016/j.electacta.2009.01.011
  16. Yang, G.; Liu, H.; Ji, H.; Chen, Z.; Jiang, X. Electrochim. Acta 2010, 54, 2951.
  17. Silversmit, G.; Depla, D.; Poelman, H.; Marin, G. B.; Gryse, R. D. J. Electron Spectroscopy and Related Phenomena 2004, 135, 167. https://doi.org/10.1016/j.elspec.2004.03.004
  18. Choi, H. J.; Lee, K. M.; Kim, G. Y.; Lee, J. G. J. Am. Ceram. Soc. 2001, 84, 242. https://doi.org/10.1111/j.1151-2916.2001.tb00642.x
  19. Yin, S. C.; Grondey, H.; Strobel, P.; Huang, H.; Nazar, L. F. J. Am. Chem. Soc. 2003, 125, 409.

Cited by

  1. Binder-free Sn/Graphene Nanocomposites Prepared by Electrophoretic Deposition for Anode Materials in Lithium Ion Batteries vol.34, pp.4, 2013, https://doi.org/10.5012/bkcs.2013.34.4.1199
  2. Effects of Nd-doping on the structure and electrochemical properties of Li3V2(PO4)3/C synthesized using a microwave solid-state route vol.261, pp.None, 2011, https://doi.org/10.1016/j.ssi.2014.03.027
  3. Mn-doped Li3V2(PO4)3 nanocrystal with enhanced electrochemical properties based on aerosol synthesis method vol.50, pp.8, 2011, https://doi.org/10.1007/s10853-015-8867-6