References
- Park, D. H. and J. D. Zeikus (2000) Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66: 1292-1297. https://doi.org/10.1128/AEM.66.4.1292-1297.2000
- Kim, H. J., H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme. Microb. Technol. 30: 145-152. https://doi.org/10.1016/S0141-0229(01)00478-1
- Liu, H., R. Ramnarayanan, and B. E. Logan (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38: 2281-2285. https://doi.org/10.1021/es034923g
- Kim, T. S. and B. H. Kim (1998) Modulation of Clostridium acetobutylicum fermantation by electrochemically supplied reducing equivalent. Biotechnol. Lett. 10: 123-128.
- Park, H. S., B. H. Kim, H. S. Kim, H. J. Kim, G. T. Kim, M. Kim, I. S. Chang, Y. K. Park, and H. I. Chang (2001) A novel electrochemically active and Fe (III) reducing bacterium phylogenetically related to Clostridium butyricum isolated from a bacterial fuel cell. Anaerobe. 7: 297-306. https://doi.org/10.1006/anae.2001.0399
- Kim, G. T., M. S. Hyun, I. S. Chang, H. J. Kim, H. S. Park, B. H. Kim, S. M. Kim, and J. W. T. Wimpenny (2005) Dissimilatory Fe (III) reduction by electrochemically active lactic acid bacterium phylogenetically related to Enterococcus gallinarum isolated from submerged soil. J. Appl. Microbiol. 99: 978-987. https://doi.org/10.1111/j.1365-2672.2004.02514.x
- Chaudhuri, S. K. and D. R. Lovley (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21: 1229-1232. https://doi.org/10.1038/nbt867
- Lovley, D. R., S. J. Giovannoni, D. C. White, J. E. Champine, E. J. P. Phillips, Y. A. Gorby, and S. Goodwin (1993) Geobacter metallireducens gen. nov. sp. now., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron, and other metals. Arch. Microbiol. 159: 336-344. https://doi.org/10.1007/BF00290916
- Caccavo, F., J. D. Coates, R. A. Rossello-Mora, W. Ludwig, K. H. Schleifer, D. R. Lovley, and M. J. McInerney (1996) Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe (III)- reducing bacterium. Arch. Microbiol. 165: 370-376. https://doi.org/10.1007/s002030050340
- Bond, D. R., D. E. Holmes, L. M. Tender, and D. R. Lovley (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science. 295: 483-485. https://doi.org/10.1126/science.1066771
- Lovley, D. R., E. J. P. Phillips, and D. J. Lonergan (1989) Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Appl. Environ. Microbiol. 55: 700-706.
- Lovley, D. R., F. Caccavo, and E. J. P. Phillips (1992) Acetate oxidation by dissimilatory Fe (III) reducers. Appl. Environ. Microbiol. 58: 3205-3206.
- Tebo, B. M. and A. Y. Obraztsova (1998) Sulfate-reducing bacterium grows with Cr (VI), U (VI), Mn (IV), and Fe (III) as electron acceptors. FEMS Microbiol. Lett. 162: 193-198. https://doi.org/10.1111/j.1574-6968.1998.tb12998.x
- Kim, B. H., H. S. Park, H. J. Kim, G. T. Kim, I. S. Chang, J. Lee, and T. N. Phung (2004) Enrichment of microbial community generating electrocity using a fuel cell type electrochemical cell. Appl. Microbiol. Biotechnol. 63: 672-681. https://doi.org/10.1007/s00253-003-1412-6
- Nübel, U., F. Garcia-Pichel, and G. Muyzer (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63: 3327-3332.
- Wagner, M., R. Amann, H. Lemmer, and K. Scheleifer (1993) Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl. Environ. Microbiol. 59: 1520-1525.
- Glockner, F. O., B. M. Fuchs, and R. Amann (1999) Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl. Environ. Microbiol. 65: 3721-3726.
- Wagner, M., R. Erhart, W. Manz, R. Amann, H. Lemmer, D. Wedi, and K. H. Schleifer (1994) Development of an rRNA-targeted oligonucleotide probe specific for the genus acinetobacter and its application for in situ monitoring in activated sludge. Appl. Environ. Microbial. 60: 792-800.
- Neef, A., R. Amann, H. Schlesner, and K. Scheleifer (1998) Monitoring a widespread bacterial group: in situ detection of planctomycetes with 16S rRNA-targeted probes. Microbiol. 144: 3257-3266. https://doi.org/10.1099/00221287-144-12-3257
- Juretschko, S., A. Loy, A. Lehner, and M. Wagner (2002) The Microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA Approach. Syst. Appl. Microbiol. 25: 84-99. https://doi.org/10.1078/0723-2020-00093
- Manz, W., M. Eisenbrecher, T. R. Neu, and U. Szewzyk (1998) Abundance and spatial organization of gram-negative sulfatereducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiol. Ecol. 25: 43-61. https://doi.org/10.1111/j.1574-6941.1998.tb00459.x
- Meier, H., R. Amann, W. Ludwig, and K. H. Schleifer (1999) Specific oligonucleotide probes for In situ detection of a major group of gram-positive bacteria with Low DNA G+C content. Syst. Appl. Microbiol. 22: 186-196. https://doi.org/10.1016/S0723-2020(99)80065-4
- Eschenhagen, M., M. Schuppler, and I. Röske (2003) Molecular characterization of the microbial community structure in two activated sludge systems for the advanced treatment of domestic effluents. Water Res. 37: 3224-3232. https://doi.org/10.1016/S0043-1354(03)00136-2
- Adav, S. S., D. J. Lee, and J. Y. Lai (2009) Biological nitrificationdenitrification with alternating oxic and anoxic operations using aerobic granules. Appl. Microbiol. Biotechnol. 84: 1181-1189. https://doi.org/10.1007/s00253-009-2129-y
- Lee, J., N. T. Phung, I. S. Chang, B. H. Kim, and H. C. Sung (2003) Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiol. Lett. 223: 185-191. https://doi.org/10.1016/S0378-1097(03)00356-2
- Kim, B. H., H. S. Park, H. J. Kim, G. T. Kim, I. S. Chang, J. Lee, and N. T. Phung (2004) Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl. Microbiol. Biotechnol. 63: 672-681. https://doi.org/10.1007/s00253-003-1412-6
- Aelterman, P., K. Rabaey, T. H. Pham, N. Boon, and W. Verstraete (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 40: 3388-3394. https://doi.org/10.1021/es0525511