Spectrofluorometric Characteristics of the N-Terminal Domain of Riboflavin Synthase

아미노-말단 리보플라빈 생성효소 단백질의 형광 특성

  • Kim, Ryu-Ryun (Department of Biochemistry, Chungnam National University) ;
  • Yi, Jeong-Hwan (Department of Biochemistry, Chungnam National University) ;
  • Nam, Ki-Seok (Department of Biochemistry, Chungnam National University) ;
  • Ko, Kyung-Won (Department of Biochemistry, Chungnam National University) ;
  • Lee, Chan-Yong (Department of Biochemistry, Chungnam National University)
  • Received : 2011.02.17
  • Accepted : 2011.03.23
  • Published : 2011.03.31

Abstract

Riboflavin synthase catalyzes the formation of one molecule of each riboflavin and 5-amino-6-ribitylamino-2,4-pyrimidinedione by the transfer of a 4-carbon moiety between two molecules of the substrates, 6,7-dimetyl-8-ribityllumazine. The most remarkable feature is the sequence similarity between the N-terminal half (1-97) and the C-terminal half domain (99-213). To investigate the structure and fluorescent characteristics of the N-terminal half of riboflavin synthase (N-RS) in Escherichia coli, more than 10 mutant genes coding for the mutated N-terminal domain of riboflavin synthase were generated by polymerase chain reaction. The genes coding for the proteins were inserted into pQE vector designed for easy purification of protein by 6X-His tagging system, expressed, and the proteins were purified. Almost all mutated N-terminal domain of riboflavin synthases bind to 6,7-dimethyl-8-ribityllumazine and riboflavin as fluorescent ligands. However, N-RS C47D and N-RS ET66,67DQ mutant proteins show colorless, indicating that fluorescent ligands were dissociated during purification. In addition, most mutated proteins show low fluorescent intensity comparing to N-RS wild type, whereas N-RS C48S posses stronger fluorescent intensity than that of wild type protein. Based on this result, N-RS C48S can be used as the tool for high throughput screening system for searching for the compound with inhibitory effect for the riboflavin synthase.

리보플라빈 생성효소(riboflavin synthase)는 기질인 두 분자의 6,7-dimetyl-8-ribityllumazine과 결합 후, 4-탄소 단위(4-carbon unit)의 자리 옮김 반응을 거쳐 한 분자의 리보플라빈과 한 분자의 pyrimidine 유도체를 형성하는 반응을 촉매한다. 대장균(Escherichia coli) 리보플라빈 생성효소의 아미노-말단 도메인 절반(N-terminal domain half)과 카복시-말단 도메인 절반(C-terminal domain half)은 매우 유사한 내부 자체 아미노산 서열(intra-molecular amino acid sequence)을 갖는다. 아미노-말단 영역 리보플라빈 생성효소(N-RS) 단백질의 구조와 형광 특성을 알아보기 위하여 중합효소 연쇄 반응과 위치지정 돌연변이를 통하여 10개 이상의 돌연변이 아미노-말단 리보플라빈 생성효소 단백질을 코드 하는 유전자를 증폭시켜 pQE30 벡터에 삽입한 재조합 플라스미드를 제조하여, 과발현시킨 후 분리 정제하였다. 대부분의 아미노-말단 도메인 리보플라빈 생성효소의 돌연변이 단백질들은 야생형과 같이 형광성 리간드인 6,7-dimetyl-8-ribityllumazine 혹은 리보플라빈과 결합할 수 있는 능력을 지니고 있었으나, N-RS C47D, N-RS ET66,67DQ 돌연변이 단백질의 경우는 리간드와의 결합능력이 현저히 떨어져 형광을 띠지 않았다. 대부분의 돌연변이 단백질들의 형광 세기는 야생형 단백질(N-RS wt)보다 낮았으나, N-RS C48S는 예외적으로 야생형 단백질에 비해 2배 이상의 형광세기를 가졌다. 이와 같은 결과를 바탕으로 리보플라빈 생성효소와 형광성 리간드 사이의 상호작용을 예측 할 수 있으며, N-RS C48S 돌연변이 단백질의 형광성을 활용하여 효과적으로 효소 저해제를 발굴할 수 있는 고속다중 스크리닝 법(high-throughput screening system)으로써 활용될 수 있을 것이다.

Keywords

References

  1. Beach, R.L. and G.W. Plaut. 1970. Stereospecificity of the enzymatic synthesis of the o-xylene ring of riboflavin. J. Am. Chem. Soc. 92, 2913-2916. https://doi.org/10.1021/ja00712a052
  2. Eberhardt, S., G. Richter, W. Gimbel, T. Werner, and A. Bacher. 1996. Cloning, sequencing, mapping and hyper-expression of the gene coding for riboflavin synthase of Escherichia coli. Eur. J. Biochem. 242, 712-719. https://doi.org/10.1111/j.1432-1033.1996.0712r.x
  3. Eberhardt, S., N. Zingler, K. Kemter, G. Richter, W. Gimbel, M. Cushman, and A. Bacher. 2001. Domain structure of riboflavin synthase. Eur. J. Biochem. 268, 4315-4323. https://doi.org/10.1046/j.1432-1327.2001.02351.x
  4. Fischer, M. and A. Bacher. 2005. Biosynthesis of flavocoenzyme. Nat. Prod. Rep. 22, 324-350. https://doi.org/10.1039/b210142b
  5. Fischer, M. and A. Bacher. 2008. Biosynthesis of vitamin B2: Structure and mechanism of riboflavin synthase. Arch. Biochem. Biophys. 474, 252-265. https://doi.org/10.1016/j.abb.2008.02.008
  6. Gast, R. and J. Lee. 1978. Isolation of the in vivo emitter in bacterial bioluminescence. Proc. Natl. Acad. Sci. USA 75, 833- 837. https://doi.org/10.1073/pnas.75.2.833
  7. Illarionov, B., K. Kemter, S. Eberhardt, G. Richter, M. Cushman, and A. Bacher. 2001. Riboflavin synthase of Escherichia coli. Effect of single amino acid substitutions on reaction rate and ligand binding properties. J. Biol. Chem. 276, 11524-11530. https://doi.org/10.1074/jbc.M008931200
  8. Kim, R.R., B. Illarionov, M. Joshi, M. Cushman, C.Y. Lee, W. Eisenreich, A. Bacher, and M. Fischer. 2010. Mechanistic insights on riboflavin synthase inspired by selective binding of 6,7-dimethyl-8-ribityllumazine exomethylene anion. J. Amer. Chem. Soc. 132, 2983-2980. https://doi.org/10.1021/ja908395r
  9. Lee, C.Y., B. Illarionov, Y.E. Woo, K. Kempter, R.R. Kim, S. Eberhardt, M. Cushman, M. Fischer, W. Eisenreich, and A. Bacher. 2007. Ligand binding properties of the riboflavin synthase from Escherichia coli. J. Biochem. Mol. Biol. 40, 239-246. https://doi.org/10.5483/BMBRep.2007.40.2.239
  10. Liao, D.I., Z. Wawrzak, J.C. Calabrese, P.V. Vitanen, and D.B. Jordan. 2001. Crystal structure of riboflavin synthase. Structure 9, 399-408. https://doi.org/10.1016/S0969-2126(01)00600-1
  11. Marcus, R. and A.M. Coulston. 1990. Water soluble vitamin. The vitamin complex and ascorbic acid. The pharmacological basis of therapeutics, pp. 1534-1536. In Gilman, Rall, Nies, and Tayler (eds.) 8th eds. Pergamon press, New York, USA.
  12. Marini, F., A. Naeem, and J.N. Lapeyre. 1993. An efficient 1-tube PCR method for internal site-directed mutagenesis of large amplified molecules. Nucleic Acids Res. 21, 2277-2278. https://doi.org/10.1093/nar/21.9.2277
  13. Meighen, E.A. 1991. Molecular biology of bacterial bioluminescence. Microbiol. Rev. 55, 123-142.
  14. Meining, W., S. Eberhardt, A. Bacher, and R. Ladenstein. 2003. The structure of the N-terminal domain of riboflavin synthase in complex with riboflavin at 2.6Å resolution. J. Mol. Biol. 331, 1053-1063. https://doi.org/10.1016/S0022-2836(03)00844-1
  15. O'Kane, D.J. and D.C. Prasher. 1992. Evolutionary origins of bacterial bioluminescence. Mol. Microbiol. 6, 443-449. https://doi.org/10.1111/j.1365-2958.1992.tb01488.x
  16. O'Kane, D.J., B. Woodward, J. Lee, and D.C. Prasher. 1991. Borrowed proteins in bacterial bioluminescence. Proc. Natl. Acad. Sci. USA 88, 1100-1104. https://doi.org/10.1073/pnas.88.4.1100
  17. Otto, M.K. and A. Bacher. 1981. Ligand-binding studies on light riboflavin synthase from Bacillus subtilis. Eur. J. Biochem. 115, 511-517.
  18. Plaut, G.W. 1963. Studies on the nature of the enzymatic conversion of 6,7-dimethyl-8-ribityllumazine to riboflavin. J. Biol. Chem. 238, 2225-2243.
  19. Plaut, G.W., R.L. Beach, and T. Aogaichi. 1970. Studies on the mechanism of elimination of protons from the methyl groups of 6,7-dimethyl-8-ribityllumazine by riboflavin synthetase. Biochemistry 9, 771-785. https://doi.org/10.1021/bi00806a010
  20. Schott, K., J. Kellerman, F. Lottspeich, and A. Bacher. 1990. Riboflavin synthase of Bacillus subtilis. Purification and amino acid sequence of the alpha subunit. J. Biol. Chem. 265, 4204- 4209.
  21. Truffault, V., M. Coles, T. Diercks, K. Abelmann, S. Eberhardt, H. Luttgan, A. Bacher, and H. Kessler. 2001. The solution structure of the N-terminal domain of riboflavin synthase. J. Mol. Biol. 309, 949-960. https://doi.org/10.1006/jmbi.2001.4683
  22. Woo, Y.E., S.Y. Kim, and C.Y. Lee. 2005. Expression, and generation of amino-terminal domain of the gene coding for the lumazine protein from Photobacterium phosphoreum. Kor. J. Microbiol. 41, 306-311.