• Title/Summary/Keyword: lumazine

Search Result 13, Processing Time 0.026 seconds

Generation and Expression of Amino-Terminal Domain of the Gene Coding for the Lumazine Protein from Photobacterium phosphoreum (발광 박테리아 Photobacterium phosphoreum의 Lumazine Protein을 코드 하는 유전자의 염기 서열 분석 및 발현)

  • Woo Young-Eun;Kim So-Young;Lee Chan-Yong
    • Korean Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.306-311
    • /
    • 2005
  • In this study, the amino-terminal half truncated lump and the whole lump genes from Photobacterium phosphoreum coding for the lumazine protein were cloned by polymerase chain reaction and expressed in Escherichia coli. To identifiy of the binding site of the ligand or substrate, the amino acid identities from the sequences of the lumazine protein, yellow fluorescent protein, and riboflavin synthase from different organisms were also compared and analyzed.

Spectrofluorometric Properties of N-Terminal Domain of Lumazine Protein from Photobacterium leiognathi

  • Kang, Kyoung-Suk;Kim, So-Young;Lee, Jung-Hwan;Nam, Ki-Seok;Lee, Eui Ho;Lee, Chan Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1673-1678
    • /
    • 2013
  • Lumazine protein is a member of the riboflavin synthase superfamily and the intense fluorescence is caused by non-covalently bound to 6,7-dimethyl 8-ribityllumazine. To figure out the binding modes and the structure of the N-terminal domain of lumazine protein, the wild type of protein extending to amino acid 118 (N-LumP 118 Wt) and mutants of N-LumP 118 V41W, S48W, T50W, D64W, and A66W from Photobacterium leiognathi were purified. The biochemical properties of the wild type and mutants of N-LumP 118 proteins were analyzed by absorbance and fluorescence spectroscope. The peak of absorbance and fluorescence of lumazine ligand were shifted to longer wavelength on binding to N-LumPs. The observed absorbance value at 410 nm of lumazine bound to N-LumP 118 proteins indicate that one mole of N-LumP 118 proteins bind to one mole of ligand of lumazine. Fluorescence analysis show that the maximum peak of fluorescence of N-LumP S48W was shifted to the longest wavelength by binding with 6,7-dimethyl 8-ribityllumazine and was shown to the greatest quench effect by acrylamide among all tryptophan mutants.

Construction, Expression, and Purification of N-Terminal Variants of Lumazine Protein from Photobacterium leiognathi (발광세균 Photobacterium leiognathi의 돌연변이 아미노-말단 루마진 단백질들의 제조, 발현 및 정제)

  • Kang, Kyoung-Suk;Kim, So-Young;Choi, Ji-Sun;Kim, Young-Doo;Pokoo, Robert;Nam, Ki-Seok;Lee, Chan Yong
    • Korean Journal of Microbiology
    • /
    • v.49 no.2
    • /
    • pp.205-210
    • /
    • 2013
  • Lumazine protein is a fluorescent protein isolated from the bioluminescent bacteria of Photobacterium species. To generate minimal size of lumazine protein with possessing fluorescent characteristic, the gene coding for the wild type N-terminal domain of lumazine protein (N-LumP 118) containing amino acids up to 118 from Photobacterium leiognathi was produced. In addition, the genes coding for the variant proteins of N-LumP 118, replaced with one tryptophan amino acid (N-LumP 118 V41W, S48W, T50W, D64W, and A66W), were also constructed by Polymerase Chain Reaction and Site Directed Mutagenesis. These proteins were expressed in Escherichia coli by transformation with recombinant plasmids and purified by 6X-His tagging system. Spectroscopic studies have show that the purified proteins are capable of binding to the fluorescent ligand 6,7-dimethyl-8-ribityllumazine, resulted in showing of fluorescent characteristic with the minimal size of protein. From these studies, the mutant proteins containing single tryptophan amino acid residue, possessing its own intrinsic flouophore character at the different position, will be able to the use as a probe for further studies to deduce their three dimensional structure and the binding modes.

The Functions of the Riboflavin Genes in the lux Operon from Photobacterium Species (Photobacterium Species의 lux 오페론에서 발견된 Riboflavin 생합성 유전자들의 기능)

  • 이찬용;임종호
    • Korean Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.173-179
    • /
    • 2002
  • The functions of riboflavin synthesis genes ( ribI,II,III and IV) found immediately downstream of luxG in the lux operon from Photobacterium species were identified using the biochemical and genetical analysis. The ribI-III gene codes for protein corresponding to that coded by the second (riboflavin synthase), third (3,4-dihydroxy 2-butanone 4-phosphate synthase/GTP cyclohydrolase II) and fourth (lumazine synthase) gene, respectively, of Bacillus subtilis rib operon with the respective gene procuct sharing 41-50% amino acid sequence identity. Unexpectedly, the sequence of the ribIV product of Photobacterium phosphoreum does not correspond in sequence to the protein encoded by the fifth rib gene of Bacillus subtilis. Instead the gene (ribIV) codes for a polypeptide similar in sequence to GTP cyclohydrolase II of Escherichia coli and the carboxy terminal domain of the third rib gene from Bacillus subtilis. Complementation of Escherichia coli riboflavin auxotrophs showed that the function of the gene products of ribII and ribIV are DHBP synthase and GTP cyclohydrolase II, respectively. In addition the experiment, showing that increase in thermal stability of riboflavin synthase coded by ribIon coexpression with ribIII, provided indirect evidence that the latter gene codes for lumazine synthase.

Application of periostin peptide-decorated self-assembled protein cage nanoparticles for therapeutic angiogenesis

  • Kim, Ba Reun;Yoon, Jung Won;Choi, Hyukjun;Kim, Dasol;Kang, Sebyung;Kim, Jae Ho
    • BMB Reports
    • /
    • v.55 no.4
    • /
    • pp.175-180
    • /
    • 2022
  • Peptides are gaining substantial attention as therapeutics for human diseases. However, they have limitations such as low bioavailability and poor pharmacokinetics. Periostin, a matricellular protein, can stimulate the repair of ischemic tissues by promoting angiogenesis. We have previously reported that a novel angiogenic peptide (amino acids 142-151) is responsible for the pro-angiogenic activity of periostin. To improve the in vivo delivery efficiency of periostin peptide (PP), we used proteins self-assembled into a hollow cage-like structure as a drug delivery nanoplatform in the present study. The periostin peptide was genetically inserted into lumazine synthase (isolated from Aquifex aeolicus) consisting of 60 identical subunits with an icosahedral capsid architecture. The periostin peptide-bearing lumazine synthase protein cage nanoparticle with 60 periostin peptides multivalently displayed was expressed in Escherichia coli and purified to homogeneity. Next, we examined angiogenic activities of this periostin peptide-bearing lumazine synthase protein cage nanoparticle. AaLS-periostin peptide (AaLS-PP), but not AaLS, promoted migration, proliferation, and tube formation of human endothelial colony-forming cells in vitro. Intramuscular injection of PP and AaLS-PP increased blood perfusion and attenuated severe limb loss in the ischemic hindlimb. However, AaLS did not increase blood perfusion or alleviate tissue necrosis. Moreover, in vivo administration of AaLS-PP, but not AaLS, stimulated angiogenesis in the ischemic hindlimb. These results suggest that AaLS is a highly useful nanoplatform for delivering pro-angiogenic peptides such as PP.

Accumulation of Chlorogenic Acid as a near UV-shielding Compound in Cauliflower Grown under Enhanced UV-B Radiation

  • Shibata, Hitoshi;Tanaka, Tomoyuki;Yonemura, Takeshi;Sawa, Yoshihiro;Ishikawa, Takahiro
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.436-438
    • /
    • 2002
  • Since solar radiation contains wavelength essential for photosynthesis accompanying with near-UV light, UV-B effects on biological parameters and acclimation mechanisms are influenced by photosynthetically active radiation (PAR). Therefore, to elucidate near-UV shielding mechanism in higher plants, we cultivated cauliflower under usual solar radiation and increased UV-B from fluorescent lamps, two- or three-fold excess over continuously estimated UV-B dose in PAR during daytime, using computer regulated systems. Increased UV-B radiation had little effect on growth expressed as fresh weigh and leaf area. Water soluble low molecular weight compounds showing absorption in near UV region were enhanced according to the irradiated UV-B dose. One of compounds in cauliflower leaves was identified as chlorogenic acid. This was found to have no near-UV photosenSitizerable activity and is known to have an ability to scavenge a wide species of active oxygen. Another pro-oxidant compound that generates superoxide anion radical under near-UV irradiation was not induced by increased UV-B during cultivation, and identified as lumazine, a degradation product from folic acid.

  • PDF

Studies on the Regioselective Synthesis of 1,3-Dimethyllumazine Derivatives by Using the Timmis Reaction and Their Side Chain Reactions (Timmis반응을 이용한 1,3-Dimethyllumazine 유도체의 위치 선택적 합성과 곁사슬반응에 관한 연구)

  • Kim, Yeon Hee;Kim, Jae Seung;Kang, Yong Han
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.5
    • /
    • pp.535-539
    • /
    • 1999
  • 1,3-Dimethyllumazine derivatives were synthesized by using Timmis reaction. The reaction of 4-amino-1,3-dimethyl-5-nitrosouracil(1) with 2,4-pentanedione, ethyl cyanoacetate, and ethyl acetoacetate provided 6-acetyl-1,3,7-trimethyllumazine (2), ethyl 7-amino-1,3-dimethyllumazine-6-carboxylate (4), and ethyl 1,3,7-trimethyllumazine-6-carboxylate (5) in good yieId, respectively. The various 1,3-dimethyllumazine derivatives were prepared from the side chain reactions of 6-acetyl and ester group in compound 2,4, and 5. The structure and physical properties of obtained compounds were characterized NMR, UV, IR spectrum, and elementary analysis.

  • PDF