DOI QR코드

DOI QR Code

External and Internal Glucose Mass Transfers in Succinic Acid Fermentation with Stirred Bed of Immobilized Actinobacillus succinogenes under Substrate and Product Inhibitions

  • Galaction, Anca-Irina ("Gr.T. Popa" University of Medicine and Pharmacy of Iasi, Department of Biotechnologies) ;
  • Rotaru, Roxana ("Gh. Asachi" Technical University of Iasi, Department of Biochemical Engineering) ;
  • Kloetzer, Lenuta ("Gh. Asachi" Technical University of Iasi, Department of Biochemical Engineering) ;
  • Vlysidis, Anestis (Satake Center for Grain Process Engineering, University of Manchester) ;
  • Webb, Colin (Satake Center for Grain Process Engineering, University of Manchester) ;
  • Turnea, Marius ("Gr.T. Popa" University of Medicine and Pharmacy of Iasi, Department of Biotechnologies) ;
  • Cascaval, Dan ("Gh. Asachi" Technical University of Iasi, Department of Biochemical Engineering)
  • Received : 2011.07.12
  • Accepted : 2011.08.31
  • Published : 2011.12.28

Abstract

This paper is dedicated to the study on the external and internal mass transfers of glucose for succinic acid fermentation under substrate and product inhibitions using a bioreactor with stirred bed of immobilized Actinobacillus succinogenes cells. By means of the substrate mass balance for a single particle of biocatalysts, considering the kinetic model adapted for both inhibitory effects, specific mathematical models were developed for describing the profiles of the substrate concentration in the outer and inner regions of biocatalysts and for estimating the substrate mass flows in the liquid boundary layer surrounding the particle and inside the particle. The values of the mass flows were significantly influenced by the internal diffusion velocity and rate of the biochemical reaction of substrate consumption. These cumulated influences led to the appearance of a biological inactive region near the particle center, its magnitude varying from 0 to 5.3% of the overall volume of particles.

Keywords

References

  1. Arikawa, Y., T. Kuroyanagi, M. Shimosaka, H. Muratsubaki, K. Enomoto, R. Kodaira, and M. Okazaki. 1999. Effect of gene disruptions of the TCA cycle on production of succinic acid in Saccharomyces cerevisiae. J. Biosci. Bioeng. 87: 28-36. https://doi.org/10.1016/S1389-1723(99)80004-8
  2. Bird, R. B., W. E. Stewart, and N. E. Lightfoot. 1960. Transport Phenomena. Wiley, New York.
  3. Ca caval, D. and A. I. Galaction. 2007. The European colour of biotechnology is white. Rom. Biotechnol. Lett. 12: 3489-3494.
  4. Chen, K., M. Jiang, P. Wei, J. Yao, and H. Wu. 2010. Succinic acid production from acid hydrolysate of corn fiber by Actinobacillus succinogenes. Appl. Biochem. Biotechnol. 160: 477-485. https://doi.org/10.1007/s12010-008-8367-0
  5. Corona-Gonzalez, R. I., A. Bories, V. Gonzalez-Alvarez, and C. Pelayo-Ortiz. 2008. Kinetic study of succinic acid production by Actinobacillus succinogenes ZT-130. Process Biochem. 43: 1047-1053. https://doi.org/10.1016/j.procbio.2008.05.011
  6. David, H., M. Akesson, and J. Nielsen. 2003. Reconstruction of the central carbon metabolism of Aspergillus niger. J. Dairy Sci. 270: 4243-4253.
  7. Dorado, M. P., S. K. C. Lin, A. Koutinatis, C. Du, R. Wang, and C. Webb. 2009. Cereal-based biorefinery development: Utilisation of wheat milling by-products for the production of succinic acid. J. Biotechnol. 143: 51-59. https://doi.org/10.1016/j.jbiotec.2009.06.009
  8. Estape, D., F. Godia, and C. Sola. 1992. Determination of glucose and ethanol diffusion coefficients in Ca-alginate gel. Enzyme Microbiol. Technol. 14: 396-401. https://doi.org/10.1016/0141-0229(92)90009-D
  9. Galaction, A. I., A. M. Lup teanu, and D. Ca caval. 2007. Bioreactors with stirred bed of immobilized cells. 1. Studies on mixing efficiency. Environ. Eng. Manag. J. 6: 101-110.
  10. Galaction, A. I., A. M. Lup teanu, M. Turnea, and D. Ca caval. 2010. Effect on internal diffusion on bioethanol production in a bioreactor with yeasts cells immobilized on mobile beds. Environ. Eng. Manag. J. 9: 675-680.
  11. Inui, M., S. Murakami, S. Okino, H. Kawaguchi, A. A. Verties, and H. Yukawa. 2004. Metabolic analysis of Corynebacterium glutamicum during lactate and succinate production under oxygen deprivation conditions. J. Mol. Microbiol. Biotechnol. 7: 182-196. https://doi.org/10.1159/000079827
  12. Li, J., M. Jiang, K. Chen, L. Shang, P. Wei, H. Y. Q. Ye, et al. 2010. Enhanced production of succinic acid by Actinobacillus succinogenes with reductive carbon source. Process Biochem. 45: 980-985. https://doi.org/10.1016/j.procbio.2010.03.001
  13. Li, Q., D. Wang, Y. Wu, M. Yang, W. Li, J. Xing, and Z. Su. 2010. Kinetic evaluation of products inhibition to succinic acid producers Escherichia coli NZN111, AFP111, BL21, and Actinobacillus succinogenes 130ZT. J. Microbiol. 48: 290-296. https://doi.org/10.1007/s12275-010-9262-2
  14. Lin, S. K. C., C. Du, A. Koutinatis, R. Wang, and C. Webb. 2008. Substrate and product inhibition kinetics in succinic acid production by Actinobacillus succinogenes. Biochem. Eng. J. 41: 128-135. https://doi.org/10.1016/j.bej.2008.03.013
  15. Ling, E. T. M., J. T. Dibble, M. R. Houston, L. B. Lockwood, and L. P. Elliott. 1978. Accumulation of 1-trans-2,3-epoxysuccinic acid and succinic acid by Paecilomyces varioti. Appl. Environ. Microbiol. 35: 1213-1215.
  16. Liu, Y. P., P. Zheng, Z. H. Sun, Y. Ni, J. J. Dong, and P. Wei. 2008. Strategies of pH control and glucose-fed batch fermentation for production of succinic acid by Actinobacillus succinogenes CGMCC1593. J. Chem. Technol. Biotechnol. 83: 722-729. https://doi.org/10.1002/jctb.1862
  17. Liu, Y. P., P. Zheng, Z. H. Sun, Y. Ni, J. J. Dong, and L. L. Zhu. 2008. Economical succinic acid production from cane molasses by Actinobacillus succinogenes. Bioresource Technol. 99: 1736-1742. https://doi.org/10.1016/j.biortech.2007.03.044
  18. McIntyre, M. and B. McNeil. 1997. Effects of elevated dissolved $CO_{2}$ levels on batch and continuous cultures of Aspergillus niger A60: An evaluation of experimental methods. Appl. Environ. Microbiol. 63: 4171-4177.
  19. McKinlay, J. B., J. G. Zeikus, and C. Vieille. 2005. Insights into Actinobacillus succinogenes fermentative metabolism in a chemically defined growth medium. Appl. Environ. Microbiol. 71: 6651-6656. https://doi.org/10.1128/AEM.71.11.6651-6656.2005
  20. Moon, S. K., Y. J. Wee, J. S. Yun, and H. W. Ryu. 2004. Production of fumaric acid using rice brain and subsequent conversion to succinic acid through a two-step process. Appl. Biochem. Biotechnol. 113-116: 834-855.
  21. Perry, R. H. and C. H. Chilton. 1973. Chemical Engineers Handbook. 5th Ed. McGraw-Hill, New York.
  22. Song, H. and S. Y. Lee. 2006. Production of succinic acid by bacterial fermentation. Enz. Microb. Technol. 39: 352-361. https://doi.org/10.1016/j.enzmictec.2005.11.043
  23. Urbance, S. E., A. L. Pometto III, A. A. DiSpirito, and A. Demirci. 2003. Medium evaluation and plastic composite support ingredient selection for biofilm formation and succinic acid production by Actinobacillus succinogenes. Food Biotechnol. 17: 53-65. https://doi.org/10.1081/FBT-120019984
  24. Urbance, S. E., A. L. Pometto III, A. A. DiSpirito, and Y. Denli. 2004. Evaluation of succinic acid continuous and repeatbatch biofilm fermentation by Actinobacillus succinogenes using plastic composite support bioreactors. Appl. Biochem. Biotechnol. 65: 664-670.
  25. Van Gylswyk, N. O. 1995. Succiniciclasticum ruminis gen-nov, sp.-nov, a ruminal bacterium converting succinate to propionate as the sole energy-yielding mechanism. Int. J. Syst. Bacteriol. 45: 297-300. https://doi.org/10.1099/00207713-45-2-297
  26. Vicente, A. A., M. Dluhy, E. C. Ferreira, M. Mota, and J. A. Teixeira. 1998. Mass transfer properties of glucose and O2 in S. cerevisiae flocs. Biochem. Eng. J. 2: 35-43. https://doi.org/10.1016/S1369-703X(98)00015-1
  27. Vlysidis, A., M. Binns, C. Webb, and C. Thoedoropoulos. 2009. Utilisation of glycerol to platform chemicals within the biorefinery concept: A case for succinate production. Chem. Eng. Trans. 18: 537-542.
  28. Williams, D. and D. M. Munnecke. 1981. The production of ethanol by immobilized yeast cells. Biotechnol. Bioeng. 23: 1813-1825. https://doi.org/10.1002/bit.260230809
  29. Willke, T. and K. D. Vorlop. 2004. Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl. Microbiol. Biotechnol. 66: 131-142. https://doi.org/10.1007/s00253-004-1733-0
  30. Zaiat, M., J. A. D. Rodrigues, and E. Foresti. 2000. External and internal mass transfer effects in an anaerobic fixed-bed reactor for wastewater treatment. Process Biochem. 35: 943- 949. https://doi.org/10.1016/S0032-9592(00)00127-8
  31. Zeikus, J. G., M. K. Jain, and P. Elankovan. 1999. Biotechnology of succinic acid production and markets for derived industrial products. Appl. Microbiol. Biotechnol. 51: 345-352.

Cited by

  1. Succinic acid fermentation in a stationary-basket bioreactor with a packed bed of immobilized Actinobacillus succinogenes: 1. Influence of internal diffusion on substrate mass transfer and consumption vol.39, pp.6, 2011, https://doi.org/10.1007/s10295-012-1095-z
  2. Enzymatic Hydrolysis and Succinic Acid Fermentation from Steam-Exploded Corn Stalk at High Solid Concentration by Recombinant Escherichia coli vol.170, pp.8, 2011, https://doi.org/10.1007/s12010-013-0319-7
  3. Influence of operational parameters on the fluid-side mass transfer resistance observed in a packed bed bioreactor vol.5, pp.None, 2011, https://doi.org/10.1186/s13568-015-0111-x
  4. Operational parameters and their influence on particle-side mass transfer resistance in a packed bed bioreactor vol.5, pp.1, 2015, https://doi.org/10.1186/s13568-015-0138-z
  5. Biotechnological route for sustainable succinate production utilizing oil palm frond and kenaf as potential carbon sources vol.101, pp.8, 2011, https://doi.org/10.1007/s00253-017-8210-z
  6. Potential use of coconut shell activated carbon as an immobilisation carrier for high conversion of succinic acid from oil palm frond hydrolysate vol.7, pp.78, 2011, https://doi.org/10.1039/c7ra09413b