DOI QR코드

DOI QR Code

기후변화가 하구 습지 토양의 생지화학적 반응에 미치는 영향에 관한 연구

Effects of Global Warming on the Estuarine Wetland Biogeochemistry

  • 기보민 (이화여자대학교 환경공학과) ;
  • 최정현 (이화여자대학교 환경공학과)
  • Ki, Bo-Min (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Choi, Jung-Hyun (Department of Environmental Science and Engineering, Ewha Womans University)
  • 투고 : 2011.07.22
  • 심사 : 2011.08.29
  • 발행 : 2011.08.31

초록

이 연구는 대기 중 $CO_2$ 농도의 증가 및 질소 농도 조건에 따라 토양의 생물학적 유기물 분해과정의 변화 양상을 살펴보고, 담수 습지 토양에서 주로 일어나는 탈질, 철환원, 메탄환원 반응이 토양 유기물 분해에서 차지하는 중요도를 파악하여, 습지가 대기 중 온실가스 농도 변화에 미치는 영향을 예측해 보고자 하였다. 탈질률, 메탄환원률은 $CO_2$ 농도 변화, 식물 유무, 질소 유무에 따라 통계적으로 유의한 차이를 보였고(p < 0.05), 철환원률의 경우 질소의 유무에 따른 변화만이 유의한 차이를 보였다. $CO_2$ 농도가 증가함에 따라 메탄환원이 유기물을 분해하는 함께 질소가 첨가될 경우에도 메탄환원률의 비율이 높게 나타나 기후변화에 따른 담수 퇴적물의 혐기성 물질대사반응은 메탄환원이 가장 주요 반응임을 알 수 있다. 기후변화는 또한 분해되어지는 유기물의 총량도 증가시켜 전체적으로 $CO_2$ 농도가 높은 경우, 특히 $CO_2$ 농도가 높으면서 질소가 첨가된 경우에 단위시간당 단위무게의 토양에서 분해되어지는 유기물의 양이 많아짐을 알 수 있다. 연구의 결과로부터 기후변화는 습지 토양내 유기물의 혐기적 분해의 속도를 증가시켜 분해되어지는 유기물의 양을 증가시키므로 분해의 산물로 발생되는 온실가스($CO_2$, $N_2O$, $CH_4$ 등)의 대기 방출을 증진시켜 기후변화에 순영향(positive effect)를 줄 수 있으리라 판단된다.

This study investigated the effects of elevated $CO_2$ and nitrogen addition on the anaerobic decomposition mediated by microorganisms to determine the microbial metabolic pathways in the degradation of organic matters of the sediments. There were statistically significant differences(P < 0.05) in the rates between denitrification and methanogenesis upon increased $CO_2$ concentration, nitrogen addition, in the presence of plants. Based on the assumption that anaerobic degradation of organic matter mainly occurs through denitrification, iron reduction, and methanogenesis, methanogenesis is the dominant pathways in the decomposition of organic matter under the condition of elevated $CO_2$ and nitrogen addition. In addition, the altered environment increased anaerobic carbon decomposition. Therefore, it can be concluded that freshwater wetland sediments have positive effects on the global warming by the increased methanogenesiss as well as increased anaerobic carbon decomposition.

키워드

참고문헌

  1. IPCC, Climate Change 2007, The Physical Science Basis, Cambridge University Press, New York(2007).
  2. Houghton, J. T., Ding, Y., Griggs, D. J., Noquer, M., van der Linden, P. J., Dai, X., Maskell, K. and Johnson, C. A., "Climate Change 2001: The scientific basis," Cambridge University Press, 881(2001).
  3. IPCC, Climate Change 2001, The scientific basis, Cambridge University Press(2001).
  4. Lal, M., Meehl, G. A. and Arblaster, J. M., "Simulation of Indian summer monsoon rainfall and its intraseasonal variability," Regional Environ. Change, 1, 163-179(2000). https://doi.org/10.1007/s101130000017
  5. Meehl, G. A. and Arblaster, J. M., "Mechanisms for projected future changes in south Asian monsoon precipitation," Clim. Dyn., 21, 659-675(2003). https://doi.org/10.1007/s00382-003-0343-3
  6. Drake, B. G., "A field-study of the effects of elevated $CO_2$ on ecosystem processes in a Chesapeake Bay wetland," Australian Journal of Botany, 40, 579-595(1992). https://doi.org/10.1071/BT9920579
  7. Korner, C., "Biosphere responses to $CO_2$ enrichment," Ecol. Appl., 10, 1590-1619(2000).
  8. Freeman, C., Ferner, N., Ostle, N. J., Kang, H., Dowrick, D. J., Reynolds, B., Lock, M. A., Sleep, D., Hughes, S. and Hudson, J., "Export of dissolved organic carbon from peatlands under elevated carbon dioxide Levels," Nature, 430, 195-198(2004). https://doi.org/10.1038/nature02707
  9. Lal, R., "Soil carbon sequestration impacts on global climate change and food security," Sci., 304, 1623-1627(2004). https://doi.org/10.1126/science.1097396
  10. Smith, P., Fang, C., Dawson, J. J. C. and Moncrieff, J. B., "Impact of global warming on soil organic carbon," Advances in Agronomy, 97, 1-43(2008). https://doi.org/10.1016/S0065-2113(07)00001-6
  11. Berner, R. A., "Early Diagenesis: a Theoretical Approach," Princeton University Press, Princeton, NJ, 241(1980).
  12. Armstrong, W., "Aeration in higher plants," Adv. Bot. Res., 7, 225-232(1979).
  13. Mendelssohn, I. A., Keiss, B. A. and Wakeley, J. S., "Factors controlling the formation of oxidized root channels: a review," Wetlands, 15, 37-46(1995). https://doi.org/10.1007/BF03160678
  14. Sorrell, B. K., "Effect of external oxygen demand on radial oxygen loss by juncos roots in titanium citrate solutions," Plant Cell Environ., 22, 1587-1593(1999). https://doi.org/10.1046/j.1365-3040.1999.00517.x
  15. El-Shatnawi, M. K. J. and Makhadmeh, I. M., "Ecophysiology of the plant-rhizosphere system," J. Agron. Crop Sci., 187, 1-9(2001). https://doi.org/10.1046/j.1439-037X.2001.00498.x
  16. Xu, S., Leri, A. C., Myneni, S. C. B. and Jaffé, P. R., "Uptake of bromide by two wetland plants (Typhalatifolia L. and Phragmites australis (Cav.) Trin. ex Steud)," Environ. Sci. Technol., 38, 5642-5648(2004). https://doi.org/10.1021/es049568o
  17. Cusack, D. F., Silver, W. L., Torn, M. S. and McDowell, W. H., "Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests," Biogeochem., 104, 203-225(2010).
  18. Hungate, B. A., J. S. Pukes, M. Rebecca, S., Y. Luo, Christopher, B. F., "Nitrogen and Climate Change," Sci., 302, 1512-1513(2003). https://doi.org/10.1126/science.1091390
  19. Neff, J. C., Townsend, A. R., Gleixner, G., Lehman, S. J., Turnbull, J. and Bowman, W. D., "Variable effects of nitrogen additions on the stability and turnover of soil carbon," Nature, 419, 915(2002). https://doi.org/10.1038/nature01136
  20. Rounsevell, M. D. A., Ewert, F., Reginster, I., Leemans, R. and Carter, T. R., "Future Scenarios of european agricultural land use. II. Projecting changes in cropland and grassland," Agric. Eco. Environ., 107(1-2), 117-135(2005). https://doi.org/10.1016/j.agee.2004.12.002
  21. 이상미, "토양성분과 우점종이 다른 하구습지의 갈대군집 비교," 이화여자대학교, 석사학위청구논문(2008).
  22. 한동욱, 유재원, 유영한, 이은주, 박상규, "한강하구 장항 습지의 선버들(Salix nipponica)의 지상부 1차생산성과 말 똥게(Sesarma dehaani)의 2차생산성," 한국하천호수학회, 43(2), 298-306(2010).
  23. 한강유역환경청, 한강하구 습지보호지역 모니터링 결과보고서(2009).
  24. Roden, E. E. and Wetzel R. G., "Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments," Limnol. Oceanogr., 41(8), 1733-1748 (1996). https://doi.org/10.4319/lo.1996.41.8.1733
  25. 임보미, "한강하구 퇴적물의 생지화학적 반응에 관한 연구," 대한환경공학회(2009).
  26. Megonigal, J. P., Hines, M. E. and Visscher, P. T., "Anaerobic metabolism: linkages to trace gases and aerobic processes," in W. H. Schlesinger, editor. Biogeochemistry, Elsevier- Pergamon, Oxford, UK, 317-424(2004).
  27. Groffman, P. M., Altabet, M. A., Böhlke, J. K., Butterbach- Bahl, K., David, M. B., Firestone, M. K., Giblin, A. E., Kana, T. M., Nielsen, L. P. and Voytek, M. A., "Methods for measuring denitrification: diverse approaches to a difficult problem," Ecol. Appl., 16, 2091-2122(2006). https://doi.org/10.1890/1051-0761(2006)016[2091:MFMDDA]2.0.CO;2
  28. Klememdtsson, L., Svensson, B. H., Lindberg, T. and Rosswall, T., "The use of acetylene inhibition of nitrous oxide reductase in quantifying denitrification in soils," Swedish J. Agricul. Res., 7, 179-185(1977).
  29. Yoshinari, T., Hynes, R. and Knowles, R., "Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen fixation in soil," Soil Biol. Biochem., 9, 177-183(1977). https://doi.org/10.1016/0038-0717(77)90072-4
  30. Roden, E. E. and Wetzel, R. G., "Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments," Limnol. Oceanogr., 41(8), 1733-1748 (1996). https://doi.org/10.4319/lo.1996.41.8.1733
  31. Neubauer, S. C., Givler, K., Valentine, S. K. and Megonigal J. P., "Seasonal patterns and plant-mediated controls of subsurface wetland biogeochemistry," Ecology, 86(2), 3334- 3344(2005). https://doi.org/10.1890/04-1951
  32. 기보민, 임보미, 나은혜, 최정현, "아산호 퇴적물에서 영양 염류 용출특성에 관한 연구," 대한환경공학회지, 32(1), 1-8 (2010).