DOI QR코드

DOI QR Code

Cramér-Rao Lower Bound (CRLB) Analysis for Unmanned Aerial Vehicle (UAV) Tracking with Randomly Distributed Ground Stations Using FDOA Measurements

다수의 지상국(GS)을 이용한 무인 항공기(UAV) 추적 FDOA 기반의 CRLB 성능 분석 연구

  • Min, Byoung-Yoon (Mobile Communication Lab., Electrical and Electronics Eng., Yonsei University) ;
  • An, Chan-Ho (Mobile Communication Lab., Electrical and Electronics Eng., Yonsei University) ;
  • Hong, Seok-Jun (Samsung Thales) ;
  • Jang, Jeen-Sang (Agency for Defense Development) ;
  • Kim, Dong-Ku (Mobile Communication Lab., Electrical and Electronics Eng., Yonsei University)
  • 민병윤 (연세대학교 전기전자공학과 이동통신연구실) ;
  • 안찬호 (연세대학교 전기전자공학과 이동통신연구실) ;
  • 홍석준 (삼성탈레스) ;
  • 장진상 (국방과학연구소) ;
  • 김동구 (연세대학교 전기전자공학과 이동통신연구실)
  • Received : 2011.03.14
  • Accepted : 2011.04.30
  • Published : 2011.04.30

Abstract

In this paper, the performances of Cram$\acute{e}$r-Rao Lower Bound (CRLB) with Frequency Difference of Arrival (FDOA) measurements for Unmanned Aerial Vehicle (UAV) tracking are investigated. We focus on two cases: the influence on CRLB with FDOA measurements collected by time, and random distribution of Ground Stations (GSs). We derived the performance by gauging the size of CRLB through Complementary Cumulative Distribution Function (CCDF). From the simulation results, broader distribution of GSs and FDOA measurements by longer time bring about better performance.

본 논문에서는 다수의 지상국을 이용하여 얻은 FDOA(Frequency Difference of Arrival) 측정값을 통해서 UAV(Unmanned Aerial Vehicle; 무인항공기) 추적 알고리즘의 이론적 경계인 CRLB(Cram$\acute{e}$r-Rao Lower Bound)를 분석하였다. 첫째로 FDOA 측정값을 시간을 두고 모았을 때 CRLB에 주는 영향을 관찰하였고, 둘째로 지상국이 일정한 범위 안에서 무작위적 위치를 가질 때 그 범위에 따른 FDOA의 측정값이 어떤 특성을 갖는지 확인할 수 있었다. 또한 CRLB의 크기를 측정하여 CCDF(Complementary Cumulative Distribution Function)로 나타내어 성능을 비교, 분석하였다.

Keywords

References

  1. 민병윤, 안찬호, 박의영, 김동구, "도플러 주파수를 이용한 GPS 기반 시스템에서의 무인항공기(UAV)-중계 UAV(Relay)간의 추적 알고리즘," 한국통신학회 하계종합학술발표회 2010, 제주도, vol.42, pp.585, 2010.6월.
  2. C.-H. An, J.H. Yang, D.K. Kim, U.Y. Pak and K. Kwon, "Numerical analysis of transmission efficiency to guarantee the QoS for densely distributed UAV with randomly located ground station," in Proc. IEEE ICCAE 2010, Singapore, vol.2, pp.426-429, Feb.2010.
  3. K. Ho and Y. Chan, "Solution and performance analysis of geolocation by TDOA," IEEE Trans. Aerosp. Electro. System, vol.29, no.4, pp. 1311-1322, Oct.1993. https://doi.org/10.1109/7.259534
  4. D. Musicki, R. Kaune, and W. Koch, "Mobile emitter geolocation and tracking using TDOA and FDOA measurements," IEEE. Trans. on Signal Process, vol.58, no.3, Mar.2010.
  5. K. Ho, X. Lu, and L. Kovavisaruch, "Source localization using TDOA and FDOA measurements in the presence of receiver location errors: Analysis and solution," IEEE Trans. Signal Precess., vol.55, no.2, pp.684-696, Feb.2007
  6. B.Y. Min, C.-H. An, S.J. Hong, J.S. Jang, U.Y. Pak, and D.K. Kim, "Cramer-Rao Lower Bound analysis for many-to-one UAV tracking using FDOA measurements," in Proc. IEEE ICSAP 2011, Singapore, vol.2, pp.427-431, Feb.2011.
  7. S. M. Kay, Fundamental of Statistical Signal Processing: Estimation Theory, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.
  8. W. Gardner, "Likelihood sensitivity and the Cramer-Rao bound (Corresp.)," IEEE Trans. Info. Theory, vol.25, no.4, pp.491, Jul.1979