Effect of Combination Graft of Choukroun's Platelet-rich-fibrin with Silk Fibroin Powder in the Peri-implant Defects

임플란트 주위 골 결손 부위에 Choukroun's Platelet-rich-fibrin와 실크 분말 복합 이식재 사용

  • Jang, Eun-Sik (Department of Oral and Maxillofacial Implantology, Graduate School of Hallym University) ;
  • Lee, Hyung-Seok (Department of Oral and Maxillofacial Implantology, Graduate School of Hallym University) ;
  • Lee, Hee-Sung (Department of Oral and Maxillofacial Implantology, Graduate School of Hallym University) ;
  • Lee, Hee-Jong (Department of Oral and Maxillofacial Implantology, Graduate School of Hallym University) ;
  • Park, Ki-Yu (Department of Oral and Maxillofacial Implantology, Graduate School of Hallym University) ;
  • Park, Young-Wook (Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University) ;
  • Yoon, Youn-Jin (Kangdong Sacred Heart Hospital, College of Medicine, Hallym University) ;
  • Hong, Soon-Min (Kangdong Sacred Heart Hospital, College of Medicine, Hallym University) ;
  • Park, Jun-Woo (Kangdong Sacred Heart Hospital, College of Medicine, Hallym University)
  • 장은식 (한림대학교 대학원 의학과) ;
  • 이형석 (한림대학교 대학원 의학과) ;
  • 이희성 (한림대학교 대학원 의학과) ;
  • 이희종 (한림대학교 대학원 의학과) ;
  • 박기유 (한림대학교 대학원 의학과) ;
  • 박영욱 (강릉원주대학교 치과대학 구강악안면외과학교실) ;
  • 윤연진 (한림대학교 의과대학 강동성심병원 구강악안면외과학교실) ;
  • 홍순민 (한림대학교 의과대학 강동성심병원 구강악안면외과학교실) ;
  • 박준우 (한림대학교 의과대학 강동성심병원 구강악안면외과학교실)
  • Received : 2011.02.04
  • Accepted : 2011.02.24
  • Published : 2011.03.31

Abstract

Purpose: Choukroun's platelet-rich-fibrin (PRF) is composed of platelets, white blood cells and fibrin matrix. It does not induce enough bone formation by itself but it can improve bone formation with calcium. Silk fibroin does not cause inflammatory reactions because it is bio-compatible and degradable. The purpose of this study was to exam the bone formation when a combination of Choukroun's PRF and silk fibroin was used. Methods: In this study, cell reactions to silk powder with differing molecular weights was first tested to select the appropriate silk powder. Then we applied these bone graft materials on defects of skull and in a peri-implant bony defect model in New Zealand rabbits. The results between the experimental and control s (non-grafted) group were analyzed. Results: The small sized silk fibroin powder showed increased cellular proliferation for bone-regeneration. There was no statistically significant difference between the experimental group and the control group at 6 weeks, but more new bone formation was observed in the combination graft group at 12 weeks (P<0.05). And in the dental implant model, the combination bone graft group showed much improved torque test results, which was statistically significant. Histomorphometric analysis showed more regenerated cortical bone and a higher mean bone to implant in the experimental group. Both were statistically significant. Conclusion: The combination graft of Choukroun's platelet-rich-fibrin (PRF) and silk fibroin powder can successfully restore the bony defects in a skull defected model and a peri-implant bony defects model.

Keywords

References

  1. Pietrabissa R, Gionso L, Quaglini V, Di Martino E, Simion M. An in vitro study on compensation of mismatch of screw versus cement-retained implant supported fixed prostheses. Clin Oral Implants Res 2000;11:448-57. https://doi.org/10.1034/j.1600-0501.2000.011005448.x
  2. Huys LW. Replacement therapy and the immediate post-extraction dental implant. Implant Dent 2001;10:93-102. https://doi.org/10.1097/00008505-200104000-00004
  3. Wilson TG Jr, Schenk R, Buser D, Cochran D. Implants placed in immediate extraction sites: a report of histologic and histometric analyses of human biopsies. Int J Oral Maxillofac Implants 1998;13:333-41.
  4. Fiorellini JP, Nevins ML. Localized ridge augmentation/preservation. A systematic review. Ann Periodontol 2003;8: 321-7. https://doi.org/10.1902/annals.2003.8.1.321
  5. Hwang KG, Shim KS, Yang SM, Park CJ. Partial-thickness cortical bone graft from the mandibular ramus: a non-invasive harvesting technique. J Periodontol 2008;79:941-4. https://doi.org/10.1902/jop.2008.070408
  6. Cranin AN, Katzap M, Demirdjan E, Ley J. Autogenous bone ridge augmentation using the mandibular symphysis as a donor. J Oral Implantol 2001;27:43-7. https://doi.org/10.1563/1548-1336(2001)027<0043:ABRAUT>2.3.CO;2
  7. Verardi S, Simion M. Management of the exposure of e-PTFE membranes in guided bone regeneration. Pract Proced Aesthet Dent 2007;19:111-7.
  8. Chiapasco M, Zaniboni M. Clinical outcomes of GBR procedures to correct peri-implant dehiscences and fenestrations: a systematic review. Clin Oral Implants Res 2009;20(Suppl 4):113-23. https://doi.org/10.1111/j.1600-0501.2009.01781.x
  9. Casati MZ, de Vasconcelos Gurgel BC, Goncalves PF, et al. Platelet-rich plasma does not improve bone regeneration around peri-implant bone defects-a pilot study in dogs. Int J Oral Maxillofac Surg 2007;36:132-6. https://doi.org/10.1016/j.ijom.2006.06.004
  10. Dohan DM, Choukroun J, Diss A, et al. Platelet- rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;101:e37-44. https://doi.org/10.1016/j.tripleo.2005.07.008
  11. Dohan DM, Choukroun J, Diss A, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part II: platelet- related biological features. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;101:e45-50. https://doi.org/10.1016/j.tripleo.2005.07.009
  12. Jung RE, Schmoekel HG, Zwahlen R, Kokovic V, Hammerle CH, Weber FE. Platelet-rich plasma and fibrin as delivery system for rhBMP-2. Clin Oral Impl Res 2005;16:676-82. https://doi.org/10.1111/j.1600-0501.2005.01183.x
  13. Kania RE, Meunier A, Hamadouche M, Sedel L, Petite H. Addition of fibrin sealant to ceramic promotes bone repair: long-term study in rabbit femoral defect model. J Biomed Mater Res 1998;43:38-45. https://doi.org/10.1002/(SICI)1097-4636(199821)43:1<38::AID-JBM4>3.0.CO;2-N
  14. Dal Pra I, Freddi G, Minic J, Chiarini A, Armato U. De novo engineering of reticular connective tissue in vivo by silk fibroin non woven materials. Biomaterials 2005;26:1987-99. https://doi.org/10.1016/j.biomaterials.2004.06.036
  15. Zhao J, Zhang Z, Wang S, et al. Apatite-coated silk fibroin scaffolds to healing mandibular border defects in canines. Bone 2009;45:517-27. https://doi.org/10.1016/j.bone.2009.05.026
  16. Altman GH, Diaz F, Jakuba C, et al. Silk-based biomaterials. Biomaterials 2003;24:401-16. https://doi.org/10.1016/S0142-9612(02)00353-8
  17. Soong HK, Kenyon KR. Adverse reactions to virgin silk sutures in cataract surgery. Ophtalmology 1984;91:479-83. https://doi.org/10.1016/S0161-6420(84)34273-7
  18. Cao Y, Wang B. Biodegradation of silk biomaterials. Int J Mol Sci 2009;10:1514-24. https://doi.org/10.3390/ijms10041514
  19. Cai K, Yao K, Lin S, et al. Poly(D, L-lactic acid) surfaces modified by silk fibroin: effects on the culture of osteoblast in vitro. Biomaterials 2002;23:1153-60. https://doi.org/10.1016/S0142-9612(01)00230-7
  20. Li M, Ogiso M, Minoura N. Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterials 2003;24:357-65. https://doi.org/10.1016/S0142-9612(02)00326-5
  21. Roh DH, Kang SY, Kim JY, et al. Wound healing effect of silk fibroin/alginate- blended sponge in full thickness skin defect of rat. J Mater Sci Mater Med 2006;17:547-52. https://doi.org/10.1007/s10856-006-8938-y
  22. Karageorgiou V, Meinel L, Hofmann S, Malhotra A, Volloch V, Kaplan D. Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. J Biomed Mater Res A 2004;71: 528-37.
  23. Kim KH, Jeong L, Park HN, et al. Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J Biotechnol 2005;120:327-39. https://doi.org/10.1016/j.jbiotec.2005.06.033
  24. Mori H, Tsukada M. New silk protein: modification of silk protein by gene engineering for production of biomaterials. J Biotechnol 2000;74:95-103.
  25. Barry EL, Mosher DF. Factor XIIIa-mediated cross-linking of fibronectin in fibroblast cell layers. Cross-linking of cellular and plasma fibronectin and of amino-terminal fibronectin fragments. J Biol Chem 1989;264:4179-85.
  26. Smith JC, Symes K, Hynes RO, DeSimone D. Mesoderm induction and the control of gastrulation in Xenopus laevis: the roles of fibronectin and integrins. Development 1990; 108:229-38.
  27. Pankov R, Ymada KM. Fibronectin at a glance. J Cell Sci 2002;115:3861-3. https://doi.org/10.1242/jcs.00059
  28. Williams CM, Engler AJ, Slone RD, Galante LL, Schwarzbauer JE. Fibronectin expression modulates mammary epithelial cell proliferation during acinar differentiation. Cancer Res 2008;68:3185-92. https://doi.org/10.1158/0008-5472.CAN-07-2673
  29. Cassinelli C, Cascardo G, Morra M, Draqui L, Motta A, Catapano G. Physical-chemical and biological characterization of silk fibroin-coated porous membranes for medical applications. Int J Artif Organs 2006;29:881-92.
  30. Couchourel D, Aubry I, Delalandre A, et al. Altered mineralization of human osteoarthritic osteoblasts is attributable to abnormal type I collagen production. Arthritis Rheum 2009; 60:1438-50. https://doi.org/10.1002/art.24489
  31. Mansell JP, Tarlton JF, Bailey AJ. Biochemical evidence for altered subchondral bone collagen metabolism in osteoarthritis of the hip. Br J Rheumatol 1997;36:16-9. https://doi.org/10.1093/rheumatology/36.1.16
  32. Rosenquist B, Grenthe B. Immediate placement of implants into extraction sockets: implant survival. Int J Oral Maxillofac Implants 1996;11:205-9.
  33. Sennerby L, Wennerberg A, Pasop F. A new microtomographic technique for non-invasive evaluation of the bone structure around implants Clin Oral Implant Res 2001;12: 91-4. https://doi.org/10.1034/j.1600-0501.2001.012001091.x
  34. Sennerby L, Thomsen P, Ericson LE. A morphometric and biomechanic comparison of titanium implants inserted in rabbit cortical and cancellous bone. Int J Oral Maxillofac Implants 1992;7:62-71.
  35. Ivanoff CJ, Sennerby L, Lekholm U. Influence of mono- and bicortical anchorage on the integration of titanium implants. A study in the rabbit tibia. Int J Oral Maxillofac Surg 1996; 25:229-35. https://doi.org/10.1016/S0901-5027(96)80036-1
  36. Turunen T, Peltola J, Makkonen T, Helenius H, Yli-Urpo A. Bioactive glass granules and polytetrafluoroethylene membrane in the repair of bone defects adjacent to titanium and bioactive glass implants. J Mater Sci Mater Med 1998;9: 403-7. https://doi.org/10.1023/A:1013235630347
  37. Sykaras N, Woody RD, Lacopino AM, Triplett RG, Nunn ME. Osseointegration of dental implants complexed with rhBMP-2: a comparative histomorphometric and radiographic evaluation. Int J Oral Maxillofac Implants 2004;19:667-78.
  38. Mannai C. Early implant loading in severely resorbed maxilla using xenograft, autograft, and plateletrich plasma in 97 patients. J Oral Maxillofac Surg 2006;64:1420-6. https://doi.org/10.1016/j.joms.2006.05.028
  39. Clausen C, Hermund NU, Donatsky O, Nielsen H, Osther K. Homologous activated platelets stimulate differentiation and proliferation of primary human bone cells. Cell Tissues Organs 2006;184:68-75. https://doi.org/10.1159/000098948
  40. Ferreira CF, Carriel Gomes MC, Filho JS, Granjeiro JM, Oliveira Simoes CM, Magini Rde S. Platelet-rich plasma influence on human osteoblasts growth. Clin Oral Implants Res 2005;16:456-60. https://doi.org/10.1111/j.1600-0501.2005.01145.x