DOI QR코드

DOI QR Code

Exothermic Characteristics of PAN-based Carbon fiber According to High Temperature Treatment

고온 열처리에 따른 PAN계 탄소섬유의 발열특성

  • Pyo, Dae-Woong (Dept. of Chemical Engineering, Chungnam National University) ;
  • Eom, Sang-Yong (Dept. of Chemical Engineering, Chungnam National University) ;
  • Lee, Young-Seak (Dept of Fine Chemical Engineering & Applied Chemistry, Chungnam National University) ;
  • Ryu, Seung-Kon (Dept. of Chemical Engineering, Chungnam National University)
  • 표대웅 (충남대학교 화학공학과) ;
  • 엄상용 (충남대학교 화학공학과) ;
  • 이영석 (충남대학교 정밀응용화학과) ;
  • 유승곤 (충남대학교 화학공학과)
  • Published : 2011.04.30

Abstract

General purpose PAN-based carbon fibers were heat treated up to $1500^{\circ}C$, and analyzed their carbon contents, crstallinity, and crystalline size(Lc). Exothermic characteristics of carbon fiber were investigated in relation to crystallinity, and crystalline size(Lc). Carbon contents, crystallinities, and crystalline size(Lc) of PAN-based carbon fibers increased from 37.08 to 53.69%, and 1.62 to 1.82 nm, respectively as the increase of heat treatment temperature from $1000^{\circ}C$ to $1500^{\circ}C$. Initial surface temperature of fiber tow also linearly increased as the increase of crystallinity, and crystalline size(Lc). Therefore, the crystallinity and crystal size(Lc) of carbon fibers can indirectly and rapidly be estimated by measuring the surface temperature increase.

범용 PAN계 탄소섬유를 $1,500^{\circ}C$까지 열처리한 후 탄소함량, 결정화도, 결정크기를 분석하고 이들의 변화에 따른 표면의 발열특성을 조사하였다. PAN계 탄소섬유의 결정화도, 결정크기는 열처리 온도가 1,000에서 $1500^{\circ}C$로 증가하는 동안 각각 37.08에서 53.69%, 1.62에서 1.82 nm로 증가하였고, 탄소섬유의 초기표면발열온도는 결정화도, 결정크기가 증가할수록 1차식으로 비례하여 증가하였다. 따라서 탄소섬유의 결정화도와 결정크기를 표면발열온도의 상승을 측정하여 간접적으로 신속하게 추정할 수 있게 되었다.

Keywords

References

  1. International committee for characterization and terminology of carbon "First Publication of 8 Further Tentative Definitions and Second Publication of Tentative Definition of Term 29," Carbon, 25, 317-318(1987). https://doi.org/10.1016/0008-6223(87)90133-3
  2. Marsh, H., "Introduction to Carbon Science," Butterworths, London, 599(1989).
  3. Fitzer, E., "Carbon Fiber and Their Composites," Springer-verlag, New York(1984).
  4. Yamaguchi, T., "Electronic Properties of Carbonized Polyacrylonitrile Fibers," Carbon, 2, 95-96(1964). https://doi.org/10.1016/0008-6223(64)90032-6
  5. Robson, D., Assabghy, F. Y. I. and Ingram, D. J. E., "Some Electronic Properties of Polyacrylonitrile-based Carbon Fiberes," J. Phys. D. Appl. Phys., 169(1972). https://doi.org/10.1088/0022-3727/5/1/323
  6. Lewin, M. and Preston, J., "Handbook of Fiber Science and Technology: Vol. III, High Technology Fibers: Part A," Marcel Dekker, New York(1985).
  7. Donnet, J. B., Wang, T. K., Rebouillat, S. and Peng, J. C. M., "Carbon Fibers," 3rd ed., Marcel Dekker, 99-106(1998).
  8. Lavin, J. G., Boyington, D. R., Lahijani, J., Nysten, B. and Issi, J. P., "The Correlation of Thermal Conductivity with Electrical Resistivity in Mesophase Pitch-based Carbon Fiber," Carbon, 31, 1001-1002(1993). https://doi.org/10.1016/0008-6223(93)90207-Q
  9. Pradere, C., Batsale, J. C. Goyheneche, J. M., Paillerb, R. and Dilhairec, S., "The Correlation of Thermal Conductivity with Electrical Resistivity in Mesophase Pitch-based Carbon Fiber," Carbon, 47, 743-743(2009).
  10. Lee, J. Y., Oh, J. H., Yang X. P. and Ryu, S. K., "Relationship Between Exothermic Heat and Carbon Contents of Pitch-based Carbon Fiber," Carbon Letter, 10, 202-207(2009). https://doi.org/10.5714/CL.2009.10.3.202
  11. Alexander, L. E., "X-ray Diffraction Methods in Polymer Science," John Wiley & Sons, Inc.,(1969).
  12. Endo, M., C. Kim, C., Karaki, T., T. Kasai, T., Mattews, M. J. and Brown, S. D., "Structural Characterization of Milled Mesophase Pitch-based Carbon Fibers," Carbon 36, 1633-1641(1998). https://doi.org/10.1016/S0008-6223(98)00157-2
  13. Katzman, H. A., Adams, P. M., Le, T. D. and Hemminger C. S., "Characterization of Low Thermal Conductivity PAN-based Carbon Fibers," Carbon 32, 379-391(1994). https://doi.org/10.1016/0008-6223(94)90158-9
  14. Marsh, H. and Griffiths, J., "A High Resolution Electron Microscopy Study of Graphitization of Graphitizable Carbon," Extended Abstracts, International Symposium on Carbon, Nov., Toyohashi, Japan, 81(1982).
  15. Hawthorne, H. M., "Carbon fiber-Their Composites and Applications," The Plastics Institute, London(1971).
  16. Inagaki, M. and Kang, F., "Carbon Materials Scince and Engineering," Tsinghua Univ. Press.,(2006).
  17. Oh, J. H., Lee, J. Y., Kang, S. H., Rhee, T. H. and Ryu, S. K., "Characterization of Heat Reformed Naphtha Cracking Bottom oil Extracts," Carbon Letters, 9, 289-293(2008). https://doi.org/10.5714/CL.2008.9.4.289
  18. Oya, N. and Johnson, D. J., "Longitudinal Compressive Behaviour and Microstructure of PAN-based Carbon Fibers," Carbon 39, 635-645(2001). https://doi.org/10.1016/S0008-6223(00)00147-0

Cited by

  1. Electrical and Resistance Heating Properties of Carbon Fiber Heating Element for Car Seat vol.27, pp.2, 2016, https://doi.org/10.14478/ace.2016.1018
  2. 질소가 도핑 된 흑연섬유 발열체의 제조 및 발열특성 vol.28, pp.1, 2017, https://doi.org/10.14478/ace.2016.1111
  3. 무전해 구리도금 된 흑연 섬유의 발열 특성 vol.55, pp.2, 2017, https://doi.org/10.9713/kcer.2017.55.2.264
  4. 저전력 및 고효율 면상발열체를 위한 피치기반 탄소종이 제조 및 특성 vol.31, pp.6, 2018, https://doi.org/10.7234/composres.2018.31.6.412