DOI QR코드

DOI QR Code

Preparation of Titania Nanotube Thin films by Anodizing

양극산화를 이용한 Titania Nanotube(TNT) 박막 제조

  • Lee, Young-Rok (Department of Chemical Engineering, Kyonggi University) ;
  • Jung, Ji-Hoon (Department of Chemical Engineering, Kyonggi University)
  • 이영록 (경기대학교 화학공학과) ;
  • 정지훈 (경기대학교 화학공학과)
  • Published : 2011.01.30

Abstract

Titania nanotube(TNT), which is a tube shaped thin film manufactured by anodizing titanium under $F^-$ ion electrolyte, has photo activity. Distilled water and formamide were used as solvent, and HF, NaF, $NH_4F$ were used as main $F^-$ ions for the electrolyte. The length and the diameter of TNT increased as the voltage and anodizing time increased. TNT prepared by anodizing was a very ordered tube, and had a maximum length of 13.7 ${\mu}m$ depending on the conditions of manufacturing. Titania prepared by anodizing was amorphous, and became an anatase crystal after heat treatment.

티타니아 나노튜브(Titania nanotube, TNT)는 티타늄을 $F^-$ 이온을 함유한 전해질 하에서 전기로 양극산화 시켜 제조 한 튜브형태의 박막으로 광학 활성을 가진다. 전해질은 증류수와 포름아마이드를 용매로 사용하였으며 HF, NaF, $NH_4F$$F^-$이온 성분으로 사용하였다. 전압과 양극산화 시간이 증가함에 따라 TNT의 길이와 직경도 증가하였다. 양극산화에 의해 제조된 TNT는 매우 규칙적인 튜브형태였으며, 제조 조건에 따라 길이는 최대 13.7 ${\mu}m$이었다. 생성된 티타니아는 비정질이었으며 열처리에 의해 아나타제 결정으로 바뀌었다.

Keywords

References

  1. Ahn, S., Choi, L. K. and Jung, J., "Characterization of Anodized Titanium Oxide Film and Photocatalytic Decomposition of Methylene Blue with Microcurrent," J. Adv. Oxid. Technol., 10(2), 354-360(2007).
  2. Zwilling, M., Aucouturier, M. and Darque-Ceretti, E., "Anodic Oxidation of Titanium and TA6V Alloy in Chromic Media. An Electrochemical Approach," Electrochim. Acta, 45(6), 921-929(1991).
  3. Varghese, O. K., Mor, G. K., Grimes, C. A., Paulose, M. and Mukherjee, N., "A Titania Nanotube-Array Room-Temperature Sensor for Selective Detection of Hydrogen at Low Concentrations," J. Nanosci. Nanotechnol, 4(7), 733-737(2004). https://doi.org/10.1166/jnn.2004.092
  4. Paulose, M., Varghese, O. K., Mor, G. K., Grimes, C. A. and Ong, K. G., "Unprecedented Ultra-high Hydrogen Gas Sensitivity in Undoped Titania Nanotubes," Nanotechnology, 17(2), 398-402(2006). https://doi.org/10.1088/0957-4484/17/2/009
  5. Mor, G. K., Shankar, K., Varghese, O. K. and Grimes, C. A., "Photoelectrochemical Properties of Titania Nanotubes," J. Mater. Res., 19, 2989-2996(2004). https://doi.org/10.1557/JMR.2004.0370
  6. Mor, G. K., Shankar, K., Paulose, M., Varghese, O. K. and Grimes, C. A., "Enhanced Photocleavage of Water Using Titania Nanotube Arrays," Nano Lett, 5(1), 191-195(2005). https://doi.org/10.1021/nl048301k
  7. Varghese, O. K., Paulose, M., Shankar, K., Mor, G. K. and Grimes, C. A., "Water- Photolysis Properties of Micron-Length Highly Ordered Titania Nanotube-Arrays," J. Nanosci. Nanotechnol., 5, 1158-1165(2005). https://doi.org/10.1166/jnn.2005.195
  8. Raja, K. S., Misra, M., Mahajan, V. K., Gandhi, T., Pillai, P. and Mohapatra, S. K., "Photo-electrochemical Hydrogen Generation Using Band-gap Modified Nanotubular Titanium Oxide in Solar Light," J. Power Sources, 161, 1450-1457(2006). https://doi.org/10.1016/j.jpowsour.2006.06.044
  9. Raja, K. S., Mahajan, V. K. and Misra, M., "Determination of Photo Conversion Efficiency of Nanotubular Titanium Oxide Photoelectrochemical Cell for Solar Hydrogen Generation," J. Power Sources, 159, 1258-1265(2006). https://doi.org/10.1016/j.jpowsour.2005.12.036
  10. Macak, J. M., Tsuchiya, H., Ghicov, A. and Schmuki, P., "A New Concept Hybrid Electrochemical Surpercapacitor: Carbon/$LiMn_2O_4$ Aqueous System," Electrochem. Commun., 7, 1138-1142(2005). https://doi.org/10.1016/j.elecom.2005.08.017
  11. Perez-Blanco, J. M. and Barber, G. D., "Ambient Atmosphere Bonding of Titanium Foil to A transparent Conductive," Solar Energy Materials and Solar Cells, 92(9), 997-1002(2008). https://doi.org/10.1016/j.solmat.2008.02.041
  12. Yang, D. J., Park, H., Cho, S. J., Kim, H. G. and Choi, W. Y., "$TiO_2$-nanotube-based Dye-sensitized Solar Cells Fabricated by An Efficient Anodic Oxidation for High Surface Area," J. Phys. Chem. Solids, 69(5-6), 1272-1275(2008). https://doi.org/10.1016/j.jpcs.2007.10.107
  13. Paulose, M., Shankar, K., Varghese, O. K., Mor, G. K. and Grimes, C. A., "Application of Highly-ordered $TiO_2$ Nanotubearrays in Heterojunction Dye-sensitized Solar Cells," J. Phys. D: Appl. Phys., 39, 2498-2503(2006). https://doi.org/10.1088/0022-3727/39/12/005
  14. Ong, K. G., Varghese, O. K., Mor, G. K., Shankar, K. and Grimes, C. A., "Application of Finite Difference Time Domain to Dyesensitized Solar Cells: the Effect of Nanotube-array Negative Electrode Dimensions on Light Absorption," Solar Energy Materials & Solar Cells, 91, 250-257(2007). https://doi.org/10.1016/j.solmat.2006.09.002
  15. Pillai, P., Raja, K. S. and Misra, M., "Electrochemical Storage of Hydrogen in Nanotubular $TiO_2$ Arrays," J. Power Sources, 161, 524-530(2006). https://doi.org/10.1016/j.jpowsour.2006.03.088
  16. Paulose, M., Varghese, O. K., Mor, G. K. and Grimes, C. A., "Unprecedented Ultra-high Hydrogen Gas Sensitivity in Undoped Titania Nanotubes," Nanotechnology, 17, 398(2006). https://doi.org/10.1088/0957-4484/17/2/009
  17. Macak, J. M., Tsuchiya, H., Bauer, S., Ghicov, A., Schmuki, P., Barczuk, P. J., Nowakowska, M. Z., Chojak, M. and Kulesza, P. J., "Self-organized Nanotubular TiO2 Matrix as Support for Dispersed Pt/Ru Nanoparticles: Enhancement of the Electrocatalytic Oxidation of Methanol," Electrochem. Commun., 7, 1417(2005). https://doi.org/10.1016/j.elecom.2005.09.031
  18. Adachi, M., Murata, Y., Harada, M. and Yoshikawa, Y., "Formation of Titania Nanotubes with High Photo-Catalytic Activity," Chem. Lett., 29, 942(2000). https://doi.org/10.1246/cl.2000.942
  19. Chu, S. Z., Inoue, S., Wada, K., Li, D., Haneda, H. and Awatsu, S., "Highly Porous $(TiO_2SiO_2TeO_2)/Al_2O_3/TiO_2$ Composite Nanostructures on Glass with Enhanced Photocatalysis Fabricated by Anodization and SolGel Process," J. Phys. Chem. B, 107, 6586 (2003). https://doi.org/10.1021/jp0349684
  20. Gong, D., Grimes, C. A., Varghese, O. K., Hu, W., Singh, R. S., Chen, Z. and Dickey, E. C., "Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation," J. Mater. Res., 16, 3331(2001). https://doi.org/10.1557/JMR.2001.0457
  21. Cai, Q., Paulose, M., Varghese, O. K. and Grimes, C. A., "The Effect of Electrolyte Composition on the Fabrication of Selforganized Titanium Oxide Nanotube Arrays by Anodic Oxidation," J. Mater. Res., 20, 230(2005). https://doi.org/10.1557/JMR.2005.0020
  22. Mor, G. K., Shankar, K., Paulose, M., Varghese, O. K. and Grimes, C. A., "Enhanced Photocleavage of Water Using Titania Nanotube-Arrays," Nano Lett., 5, 191-195(2005). https://doi.org/10.1021/nl048301k
  23. Lee, W. J., Alhoshan, M. and Smyrl, W. H., "Titanium Dioxide Nanotube Arrays Fabricated by Anodizing Processes," J. Electrochem. Soc., 153(11B), 499-B505(2006). https://doi.org/10.1149/1.2347098
  24. Kang, S. H., Kim, J. Y., Kim, H. S. and Sung, Y. E., "Formation and Mechanistic Study of Self-ordered $TiO_2$ Nanotubes on Ti Substrate," J. Ind. Eng. Chem, 14. 52-59(2008). https://doi.org/10.1016/j.jiec.2007.06.004
  25. Shankar, K., Mor, G. K., Prakasam, H. E., Yoriya, S., Paulose, M., Varghese, O. K. and Grimes, C. A., "Highly-ordered $TiO_2$ Nanotube Arrays up to 220 ${\mu}m$ in Length: Use in Water Photoelectrolysis and Dye-sensitized Solar Cells," Nanotechnology, 18, 065707 (2007). https://doi.org/10.1088/0957-4484/18/6/065707
  26. Paulose, M., Shankar, K., Yoriya, S., Prakasam, H. E., Varghese, O. K., Mor, G. K., Latempa, T. A., Fitzgerald, A. and Grimes, C. A., "Anodic Growth of Highly Ordered $TiO_2$ Nanotube Arrays to 134 ${\mu}m$ in Length," J. Phys. Chem. B, 110(33), 16179-16184 (2006). https://doi.org/10.1021/jp064020k
  27. Paulose, M., Prakasam, H. E., Varghese, O. K., Peng, L., Popat, K. C., Mor, G. K., Desai, T. A. and Grimes, C. A., "$TiO_2$ Nanotube Arrays of 1000 ${\mu}m$ Length by Anodization of Titanium Foil: Phenol Red Diffusion," J. Phys. Chem. C, 111(41), 14992-14997 (2007). https://doi.org/10.1021/jp075258r

Cited by

  1. Preparation of Nickel Oxide Films by Anodizing vol.50, pp.2, 2012, https://doi.org/10.9713/kcer.2012.50.2.204
  2. Preparation of anodic aluminum oxide (AAO) nano-template on silicon and its application to one-dimensional copper nano-pillar array formation vol.30, pp.1, 2013, https://doi.org/10.1007/s11814-012-0124-y