References
-
Matsumura, Y. and Ishibe, H., "High Temperature Steam Reforming of Methanol over
$Cu/ZnO/ZrO_2$ Catalysts," Appl. Catal. B: Environ., 91, 524-532(2009). https://doi.org/10.1016/j.apcatb.2009.06.023 - Sa, S., Silva, H., Brandao, L., Sousa, J. M. and Mendes, A., "The Catalysts for Methanol Steam Reforming," Appl. Catal. B: Environ., In Press.
-
Meshkini, F., Taghizadeh, M. and Bahmani, M. "Investigating the Effect of Metal Oxide Addivites on the Properties of
$Cu/ZnO/Al_2O_3$ Catalysts in Methanol Synthesis from Syngas Using Factorial Experimental Design," Fuel, 89, 170-175(2010). https://doi.org/10.1016/j.fuel.2009.07.007 -
Peppley, B. A., Amphlett, J. C., Kearns, L. M. and Mann, R. F., "Methanol-steam Reforming on
$Cu/ZnO/Al_2O_3$ Catalysts. Part 2. A Comprehensive Kinetic Model," Appl. Catal. A: Gen., 179, 31-49(1999). https://doi.org/10.1016/S0926-860X(98)00299-3 - Saito, M. and Murata, K., "Development of High Performance Cu/ZnO-Based Catalysts for Methanol Synthesis and the Watergas Shift Reaction," Catal. Surv. Asia, 8(4), 285-294(2004). https://doi.org/10.1007/s10563-004-9119-y
- Lee, J. W., Jeon, H. J. and Hong, S. C., "Hydrogen Production by Methanol Steam Reforming over Micro-channel Reactor," Clean Technol., 15(2), 130-136(2009).
-
Figueiredo, R. T., Andrade, H. M. C. and Fierro, J. L. G., "Influence of the Preparation Methods and Redox Properties of
$Cu/ZnO/Al_2O_3$ Catalysts for the Water Gas Shift Reaction," J. Mol. Catal. A: Chem., 318, 15-20(2010). https://doi.org/10.1016/j.molcata.2009.10.028 -
Kurr, P., Kasatkin, I., Girgsdies, F., Trunschke, A., Schlogl, R. and Ressler, T., "Microstructural Characterization of
$Cu/ZnO/Al_2O_3$ Catalysts for Methanol Steam Reforming-A Comparative Study," Appl. Catal. A: Gen., 348, 153-164(2008). https://doi.org/10.1016/j.apcata.2008.06.020 - Henpraserttae, S., Limthongkul, P. and Toochinda, P., "The Role of Urea in Cu-Zn-Al Catalysts for Methanol Steam Reforming," Monatsh Chem., 141, 269-277(2010). https://doi.org/10.1007/s00706-010-0256-x
- Chen, W. H. and Lin, B. J., "Effect of Microwave Double Absorption on Hydrogen Generation from Methanol Steam Reforming," Int. J. Hydrog. Energy, 35, 1987-1997(2010). https://doi.org/10.1016/j.ijhydene.2009.12.147
-
Nishida, K., Atake, I., Li, D., Shishido, T., Oumi, Y., Sano, T. and Takehira, K., "Effects of Noble Metal-doping on
$Cu/ZnO/Al_2O_3$ Catalysts for Water-gas Shift Reaction Catalyst Preparation by Adopting "memory effect" of Hydrotalcite," Appl. Catal. A: Gen., 337, 48-57(2008). https://doi.org/10.1016/j.apcata.2007.11.036 - Evans, J. W., Wainwright, M. S., Bridgewater, A. J. and Young, D. J., "On the Determination of Copper Surface Area by Reaction with Nitrous Oxide," Appl. Catal., 7, 75-83(1983). https://doi.org/10.1016/0166-9834(83)80239-5
- Jones., S. D., Neal, L. M. and Hagelin-Weaver, H. E., "Steam Reforming of Methanol Using Cu-ZnO Catalysts Supported on Nanoparticle Alumina," Appl. Catal. B: Environ., 84, 631-642(2008). https://doi.org/10.1016/j.apcatb.2008.05.023
-
Lindstrom, B., Pettersson, L. J. and Govind Menon, P., "Activity and Characterization of Cu/Zn, Cu/Cr and Cu/Zr on
$\gamma$ -alumina for Methanol Reforming for Fuel Cell Vehicles," Appl. Catal. A: Gen., 234, 111-125(2002). https://doi.org/10.1016/S0926-860X(02)00202-8 -
Shen, J. P. and Song, C., "Influence of Preparation Method on Performance of Cu/Zn-based Catalysts for Low-temperature Steam Reforming and Oxidative Steam Reforming of Methanol for
$H_2$ Production for Fuel Cells," Catal. Today, 77, 89-98(2002). https://doi.org/10.1016/S0920-5861(02)00235-3 - Breen, J. P. and Ross, J. R. H., "Methanol Reforming for Fuel-cell Application: Development of Zirconia-containg Cu-Zn-Al Catalysts," Catal. Today, 51, 521-533(1999). https://doi.org/10.1016/S0920-5861(99)00038-3
-
Zhang, X. R., Wang, l. C., Yao, C. A., Cao, Y., Dai, W. L., He, H. Y. and Fan, K. N., "A Highly Efficient
$Cu/ZnO/Al_2O_3$ Catalyst Via Gel-coprecipitation of Oxalate Precursors for Low Temperature Steam Reforming of Methanol," Catal. Lett., 102, 183-190 (2005). https://doi.org/10.1007/s10562-005-5853-7 -
Agarwal, V., Patel, S. and Pant, K. K., "
$H_2$ Production by Steam Reforming of Methanol over$Cu/ZnO/Al_2O_3$ Catalysts: Transient Deactivation Kinetics Modeling," Appl. Catal. A: Gen., 279, 155-164(2005). https://doi.org/10.1016/j.apcata.2004.10.026 - Alejo, L., Lago, R., Pena, M. A. and Fierro, J. L. G., "Partial Oxidation of Methanol to Produce Hydrogen over Cu-Zn Based Catalysts," Appl. Catal. A: Gen., 162, 281-297(1997). https://doi.org/10.1016/S0926-860X(97)00112-9
-
Huang, G., Liaw, B. J., Jhang, C. J. and Chen, Y. Z., "Steam Reforming of Methanol over
$CuO/ZnO/CeO_2/ZrO_2/Al_2O_3$ Catalysts," Appl. Catal. A: Gen., 358, 7-12(2009). https://doi.org/10.1016/j.apcata.2009.01.031 - Huang, T. J. and Wang, S. W., "Hydrogen Production Via Partial Oxidation of Methanol Over Copper-zinc Catalysts," Appl. Catal., 24, 287-297(1986). https://doi.org/10.1016/S0166-9834(00)81276-2
-
Wang, Z., Wang, W. and Lu, G., "Studies on the Active Species and on Dispersion of Cu in
$Cu-SiO_2$ and$Cu-Zn-SiO_2$ for Hydrogen Production Via Methanol Partial Oxidation," Int. J. Hydrog. Energy, 28, 151-158(2003). https://doi.org/10.1016/S0360-3199(02)00043-5 -
Seong, K. H., "A Study on Methanol Synthesis Through
$CO_2$ Hydrogenation over Cu-based Catalysts, " Master Dissertation, Korea Advanced Institute of Science and Technology, Daejeon(1996). - Kudo, S., Maki, T., Miura, K. and Mae, K., "High Porous Carbon with Cu/ZnO Nanoparticles Made by the Pyrolysis of Carbon Material as a Catalyst for Steam Reforming of Methanol and Dimethyl Ether," Carbon, 48, 1186-1195(2010). https://doi.org/10.1016/j.carbon.2009.11.042
-
Takeguchi, T., Kani, Y., Inoue, M. and Eguchi, K., "Steam Reforming of Methanol on Copper Catalysts Supported on Large-surfacearea
$ZnAl_2O_3$ ," Catal. Lett., 83, 49-53(2002). https://doi.org/10.1023/A:1020653414607 - Wang, L. C., Liu, Y. M., Chen, M., Cao, Y., He, H. Y., Wu, G. S., Dai, W. L. and Fan, K. N., "Production of Hydrogen by Steam Reforming of Methanol over Cu/ZnO Catalysts Prepared Via a Practical Soft Reactive Grinding Route Based on Dry Oxalateprecursor Synthesis," J. Catal., 246, 193-204(2007). https://doi.org/10.1016/j.jcat.2006.12.006
- Kam, R., Selomulya, C., Amal, R. and Scott, J., "The Influence of La-doping on the Activity and Stability of Cu/ZnO Catalyst for the Low-temperature Water-gas Shift Reaction," J. Catal., 273, 73-81(2010). https://doi.org/10.1016/j.jcat.2010.05.004
-
Shishido, T., Yamamoto, M., Li, D., Tian, Y., Morioka, H., Honda, M., Sano, T. and Takehira, K., "Water-gas Shift Reaction over Cu/ZnO and
$Cu/ZnO/Al_2O_3$ Catalysts Prepared by Homogeneous Precipitation," Appl. Catal. A: Gen., 303, 62-71(2006). https://doi.org/10.1016/j.apcata.2006.01.031
Cited by
- 수성가스전이반응(Water Gas Shift Reaction)을 위한 Ce 첨가에 따른 Cu/Mn 촉매의 활성 연구 vol.28, pp.1, 2017, https://doi.org/10.7316/khnes.2017.28.1.1
- Investigation of a hydrogen generator with the heat management module utilizing liquid‐gas organic phase change material vol.45, pp.7, 2011, https://doi.org/10.1002/er.6526