DOI QR코드

DOI QR Code

Improvement of Cellobiose Dehydrogenase(CDH) and $\beta$-Glucosidase Activity by Phanerochaete chrysosporium Mutant

Phanerochaete chrysosporium 변이주에서의 Cellobiose Dehydrogenase(CDH)와 $\beta$-Glucosidase 활성 향상

  • Kim, Eun-Ji (Department of Chemical and Biological Engineering) ;
  • Kang, Seong-Woo (Department of Chemical and Biological Engineering) ;
  • Song, Kwang-Ho (Department of Chemical and Biological Engineering) ;
  • Han, Sung-Ok (School of Life Science and Biotechnology, Korea University) ;
  • Kim, Jae-Jin (School of Life Science and Biotechnology, Korea University) ;
  • Kim, Seung-Wook (Department of Chemical and Biological Engineering)
  • 김은지 (고려대학교 화공생명공학과) ;
  • 강성우 (고려대학교 화공생명공학과) ;
  • 송광호 (고려대학교 화공생명공학과) ;
  • 한성옥 (고려대학교 생명과학대학) ;
  • 김재진 (고려대학교 생명과학대학) ;
  • 김승욱 (고려대학교 화공생명공학과)
  • Published : 2011.01.30

Abstract

Cellobiose dehydrogenase(CDH) as a hemoflavoenzyme is secreted out of cell in the cellulose degradation. As CDH strongly bound to amorphous cellulose, it helps cellulose hydrolysis by cellulase. CDH may have an important role of saccharification process for bioethanol production. In this study, Phanerochaete chrysosporium ATCC 32629 was selected for the production of CDH among other strains tested. The optimal temperature and pH of CDH produced by P. chrysosporium ATCC 32629 were ${55^{\circ}C}$ and 4, respectively. To improve the activity of CDH, the mutation of P. chrysosporium was performed using proton beam that has high energy level partially. As a result, P. chrysosporium mutant with the high activity was selected at 1.2 kGy in a range of 99.9% lethal rate. The CDH and $\beta$-glucosidase activities of mutant were 1.4 fold and 20 fold higher than those of wild strain. Therefore, P. chrysosporium mutant with the high activities of CDH and $\beta$-glucosidase was obtained from mutation by proton beam irradiation.

Hemoflavoenzyme으로서 cellobiose dehydrogenase(CDH)는 셀룰로오스를 분해하는 과정에서 세포 외부로 분비되는 효소로서 amorphous cellulose와 강하게 결합하여 셀룰라아제(cellulase)에 의해 microcrystalline cellulose의 가수분해를 증가시킨다. 따라서 CDH는 바이오 에탄올 생산의 당화공정에서 중요한 역할을 할 것으로 예상된다. 여러 백색부후균으로부터 CDH 생산이 높은 Phanerochaete chrysosporium ATCC 32629 균주를 선정하였으며, 균주로부터 생산된 CDH 효소활성의 최적 온도와 pH는 각각 ${55^{\circ}C}$와 4이었다. CDH 활성을 증가시키기 위하여 P. chrysosporium ATCC 32629 균주를 돌연변이시켰다. 돌연변이는 새로운 시도로써 국부적으로 큰 에너지를 줄 수 있는 특징을 가진 양성자 빔을 이용하였다. 양성자 빔 조사 후 사멸율이 약 99.9%인 1.2 kGy에서 CDH 활성이 증가된 변이주를 얻었다. 선별된 변이주와 모균주를 액체배양했을 때 변이주가 모균주보다 CDH와 $\beta$-glucosidase 활성이 각각 약 1.4배와 20배 증가하였다. 따라서, CDH 뿐만 아니라 $\beta$-glucosidase 활성이 높은 P. chrysosporium 변이주를 확보하였다.

Keywords

References

  1. Westermark, U. and Eriksson, K. E., "Carbohydrate-dependent Enzymatic Quinone Reduction During Lignin Degradation," Acta Chem. Scand. B, 28, 204-208(1974a).
  2. Westermark, U. and Eriksson, K. E., "Cellobiose: Quinine Oxidoreductase, a New Wood-degrading Enzyme from White-rot Fungi," Acta Chem. Scand. B, 28, 209-214(1974b).
  3. Westermark, U. and Eriksson, K. E., "Purification and Properties of Cellobiose: Quinone Oxidoreductase from Sporotrichum pulerulentum," Acta Chem. Scand. B, 29, 419-424(1975).
  4. Henriksson, G., Polk, V. and Eriksson, K. E. L., "Assay for Cellobiose Dehydrogenase in the Presence of Laccase," Biotechnol. Techn., 11(10), 743-745(1997). https://doi.org/10.1023/A:1018496418531
  5. Henriksson, G., Johansson, G. and Pettersson, G., "A Critical Review of Cellobiose Dehydrogenases," J. Biotechnol., 78, 93-113 (2000). https://doi.org/10.1016/S0168-1656(00)00206-6
  6. Ander, P. and Marzullo, L., "Sugar Oxidoreductases and Veratryl Alcohol Oxidase as Related to Lignin Degradation," J. Biotechnol., 53, 115-131(1997). https://doi.org/10.1016/S0168-1656(97)01680-5
  7. Henriksson, G., Ander, P., Pettersson, B. and Pettersson, G., "Cellobiose Dehydrogenase (cellobiose oxidase) from Phanerochaete chrysosporium as a Wood Degrading Enzyme - Studies on Cellulose, Xylan and Synthetic Lignin," Appl. Microbiol. Biotechnol., 42, 790-796(1995). https://doi.org/10.1007/BF00171963
  8. Mansfield, S. D., Saddler, J. N. and G¨ubitz, G. M., "Characterization of Endoglucanases from the Brown Rot Fungi Gloeophyllum sepiarium and Gloeophyllum trabeum," Enzyme Microb. Technol., 23, 133-140(1998). https://doi.org/10.1016/S0141-0229(98)00033-7
  9. Smith, M. H. and Gold, M. H., "Phanerochaete chrysosporium $\beta$-Glucosidases: Induction, Cellular Localization, and Physical Characterization," Appl. Environ. Microbiol., 37, 938-942(1979).
  10. Wang, A. S., Chang, D. S. K., Milcic, J. B. and Yang, T. C., "Effect of X-ray Irradiation on Maize Inbred Lime B73 Tissue Cultures and Regenerated Plants," Crop Sci., 28, 358-368(1988). https://doi.org/10.2135/cropsci1988.0011183X002800020037x
  11. Kwon, H. J., Park, Y. J., Yoo, Y. B., Park, S. Y. and Kong, W. S., "Genetic Variability and Phylogenetic Relationship Among Proton- beam Irradiated Strains of Pleurotus ostreatus," J. Microbiol. Biotechnol., 17, 1041-1044(2007).
  12. Kwon, H. J. and Kong, W. S., "Proton Beam Sensitivity of Basidiospore and Mycelium in Pleurotus ostreatus," Kor. J. Mycol., 34, 34-38(2006). https://doi.org/10.4489/KJM.2006.34.1.034
  13. Eun, J. S., Kim, J. S., Lim, H. S., Han, S. K., Choi, S. R. and Jang, Y. S., "Effect of Proton Ion and Gamma-ray Irradiation on Radiosensitivity of M1 Seedlings in Brassica napus," Kor. J. Hort. Sci. Technol., 25, 17-23(2007).
  14. Mansfield, S. D., deJong, E. and Saddler, J. N., "Cellobiose Dehydrogenase, an Active Agent in Cellulose Depolymerization," Appl. Environ. Microbiol. 63(10), 3804-3809(1997).
  15. Baminger, U., Nidetzky, B., Kulbe, K. D. and Haltrich, D. A., "Simple Assay for Measuring Cellobiose Dehydrogenase in the Presence of Laccase," J. Microbiol. Meth., 35, 253-259(1999). https://doi.org/10.1016/S0167-7012(99)00022-6