References
- J. Alvarez, R. Bagby R, D. Kurtz, and C. Perez, Weighted estimates for commutators of linear operator, Studia Math. 104 (1993), no. 2, 195-209. https://doi.org/10.4064/sm-104-2-195-209
- H. Al-Qassem and Y. Pan, Lp estimates for singular integrals with kernels belonging to certain block spaces, Rev. Mat. Iberoamericana. 18 (2002), no. 3, 701-730.
-
A. Al-Salman and Y. Pan, Singular integrals with rough kernels in Llog L
$(S^{n-1})$ , J. London Math. Soc. 66 (2002), no. 1, 153-174. https://doi.org/10.1112/S0024610702003241 - K. Andersen and R. John, Weighted inequalities for vector-valued maximal functions and singular integrals, Studia Math. 69 (1980/81), no. 1, 19-31. https://doi.org/10.4064/sm-69-1-19-31
- A. P. Calderon and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289-309. https://doi.org/10.2307/2372517
- Y. Chen and Y. Ding, Rough singular integrals on Triebel-Lizorkin space and Besov space, J. Math. Anal. Appl. 347 (2008), no. 2, 493-501. https://doi.org/10.1016/j.jmaa.2008.06.039
- J. Chen, H. Jia, and L. Jiang, Boundedness of rough oscillatory singular integral on Triebel-Lizorkin spaces, J. Math, Anal. Appl. 306 (2005), no. 2, 385-397. https://doi.org/10.1016/j.jmaa.2005.01.015
- R. Coifman and Y. Meyer, Avdela des operate pseudo-differentiles, Asterisque. 57 (1978), 1-185.
- J. Duoandikoetxea, Weighted norm inequalities for homogeneous singular integrals, Trans. Amer. Math. Soc. 336 (1993), no. 2, 869-880. https://doi.org/10.2307/2154381
- J. Duoandikoetxea and J. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimate, Invent. Math. 84 (1986), no. 3, 541-561. https://doi.org/10.1007/BF01388746
- C. Fefferman and E. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107- 115. https://doi.org/10.2307/2373450
- J. Garcia-Cuerva and J. Rubio de Francia, Weighted Norm Inequalities and Related Topics, Amsterdam-New York, North-Holland, 1985.
- S. Hofmann, Weighted norm inequalities and vector valued inequalities for certain rough operators, Indiana Univ. Math. J. 42 (1993), no. 1, 1-14. https://doi.org/10.1512/iumj.1993.42.42001
-
Y. Hou and L. Tang,
$L^p$ $(\mathbb{R}^n)$ boundedness for higher commutators of singular integrals with rough kernels belonging to certain block spaces, Math. Nachr. 282 (2009), no. 5, 713-725. https://doi.org/10.1002/mana.200610766 -
G. Hu,
$L^p$ $(\mathbb{R}^n)$ boundedness for the commutators of homogeneous singular integral op- erators, Studia. Math. 154 (2003), no. 1, 13-27. https://doi.org/10.4064/sm154-1-2 - G. Hu, S. Lu, and B. Ma, Commutators of convolution operators, Acta. Math. Sinica. 42 (1999), no. 2, 359-368.
- S. Lu, M. Taibleson, and G. Weiss, Spaces Generated by Blocks, Beijing Normal Univer- sity Press, 1989.
- S. Lu and H. Wu, Oscillatory singular integrals and commutators with rough kernels, Ann. Sci. Math. Quebec 27 (2003), no. 1, 47-66.
-
S. Lu and Y. Zhang, Criterion on
$L^p$ -boundedness for a class of oscillatory singular integrals with rough kernels, Rev. Math. Iberoamericana 8 (1992), no. 2, 201-219. - F. Ricci and E. Stein, Harmonic analysis on nilpotent groups and singular integrals I: Oscillatory integrals, J. Funct. Anal. 73 (1987), no. 1, 179-194. https://doi.org/10.1016/0022-1236(87)90064-4
- H. Triebel, Theory of Function Spaces, Basel, Birkhauser, 1983.
- D. Watson, Vector-valued inequalities, factorization, and extrapolation for a family of rough operators, J. Funct. Anal. 121 (1994), no. 2, 389-415. https://doi.org/10.1006/jfan.1994.1053
Cited by
- Vector-valued inequalities for the commutators of rough singular kernels vol.2014, pp.1, 2014, https://doi.org/10.1186/1029-242X-2014-139