Abstract
In this work, we designed and fabricated a multilayer thin film Pb(Zr,Ti)$O_3$ cantilever with a Si proof mass for low frequency vibration energy harvesting applications. A mathematical model of a mu lti-layer composite beam was derived and applied in a parametric analysis of the piezoelectric cantilever. Finally, the dimensions of the cantilever were determined for the resonant frequency of the cantilever. W e fabricated a device with beam dimensions of about 4,930 ${\mu}M$ ${\times}$ 450 ${\mu}M$ ${\times}$ 12 ${\mu}M$, and an integrated Si proof mass with dimensions of about 1,410 ${\mu}M$ ${\times}$ 450 ${\mu}M$ ${\times}$ 450 ${\mu}M$. The resonant frequency, maximum peak voltage, and highest average power of the cantilever device were 84.5 Hz, 88 mV, and 0.166 ${\mu}Wat$ 1.0 g and 23.7 ${\Omega}$, respectively. The dimensions of the cantilever were determined for the resonance frequency of the cantilever.