DOI QR코드

DOI QR Code

Fabrication and Characteristics of Micro PZT Cantilever Energy Harvester Using MEMS Technologies

MEMS 공정을 이용한 마이크로 PZT 외팔보 에너지 수확소자의 제작 및 특성

  • Kim, Moon-Keun (Department of Control and Instrumentation Engineering, Korea University) ;
  • Hwang, Beom-Seok (Department of Control and Instrumentation Engineering, Korea University) ;
  • Jeong, Jae-Hwa (Department of Control and Instrumentation Engineering, Korea University) ;
  • Min, Nam-Ki (Department of Control and Instrumentation Engineering, Korea University) ;
  • Kwon, Kwang-Ho (Department of Control and Instrumentation Engineering, Korea University)
  • 김문근 (고려대학교 제어계측공학과) ;
  • 황범석 (고려대학교 제어계측공학과) ;
  • 정재화 (고려대학교 제어계측공학과) ;
  • 민남기 (고려대학교 제어계측공학과) ;
  • 권광호 (고려대학교 제어계측공학과)
  • Received : 2011.02.25
  • Accepted : 2011.05.24
  • Published : 2011.06.01

Abstract

In this work, we designed and fabricated a multilayer thin film Pb(Zr,Ti)$O_3$ cantilever with a Si proof mass for low frequency vibration energy harvesting applications. A mathematical model of a mu lti-layer composite beam was derived and applied in a parametric analysis of the piezoelectric cantilever. Finally, the dimensions of the cantilever were determined for the resonant frequency of the cantilever. W e fabricated a device with beam dimensions of about 4,930 ${\mu}M$ ${\times}$ 450 ${\mu}M$ ${\times}$ 12 ${\mu}M$, and an integrated Si proof mass with dimensions of about 1,410 ${\mu}M$ ${\times}$ 450 ${\mu}M$ ${\times}$ 450 ${\mu}M$. The resonant frequency, maximum peak voltage, and highest average power of the cantilever device were 84.5 Hz, 88 mV, and 0.166 ${\mu}Wat$ 1.0 g and 23.7 ${\Omega}$, respectively. The dimensions of the cantilever were determined for the resonance frequency of the cantilever.

Keywords

References

  1. S. P. Beeby, M. J. Tudor, and N. M. White, J. Meas. Sci. Technol., 17, 175 (2006). https://doi.org/10.1088/0957-0233/17/12/R01
  2. S. Priya and D. J. Inman, Springer Science Business Media, LLC. (2009).
  3. Y. H. Ko and J. S. Yu, J. Nanosci. Nanotechnol., 10, 8095 (2010). https://doi.org/10.1166/jnn.2010.3020
  4. S. Priya, Appl. Phys. Lett., 87, 184101 (2005). https://doi.org/10.1063/1.2119410
  5. S. Roudy, J. Intell. Mater. Syst. Struct., 16, 809 (2005). https://doi.org/10.1177/1045389X05054042
  6. S. Roundy, P. K. Wright, and J. Rabaey, Comput. Commun., 26, 1131 (2003). https://doi.org/10.1016/S0140-3664(02)00248-7
  7. M. Kim, B. Hwang, N. K. Min, K. H. Kwon, andK. B. Park, J. Nanosci. Nanotechnol., 11, 1 (2011). https://doi.org/10.1166/jnn.2011.3839
  8. K. H. Kwon, S. Y. Kang, G. Y. Yeom, N. K. Hong, and J. H. Lee, J. Electron. Soc., 147, 1807 (2000). https://doi.org/10.1149/1.1393438
  9. A. M. Efremov, D. P Kim, and C. I. Kim, Thin Solid Films, 474, 267 (2005). https://doi.org/10.1016/j.tsf.2004.08.023
  10. Y. B. Jeon, R. Sood, J. H. Jeong, and S. G. Kim, Sensor Actuat., A122, 16 (2005).
  11. K. Sugano and O. Tabata, Microsyst. Technol., 9, 11 (2002). https://doi.org/10.1007/s00542-002-0195-5
  12. D. Shen, J. H. Park, J. H. Noh, S. Y. Choe, S. H. Kim, H. C. Wikle III, and D. J. Kim, Sensor Actuat., A154, 103 (2009).

Cited by

  1. A Study on the Dynamic Characteristics of TPMS Piezoelectric Element using Finite Element Method vol.30, pp.12, 2013, https://doi.org/10.7736/KSPE.2013.30.12.1341