• Title/Summary/Keyword: Resonant frequency

Search Result 2,313, Processing Time 0.033 seconds

A Study on The Resonant Frequency Following Control of Resonant Inverters (공진형 인버터의 공진 주파수 추종 제어에 관한 연구)

  • Kim, Nam-Jeung;Yo, Wan-Sik;Cho, Kyu-Min;In, Chi-Gak
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1177-1181
    • /
    • 2000
  • Usually, in many applications. high frequency resonant inverters are used, and the PAM(Pulse Amplitude Modulation), PFM(Pulse Frequency Modulation) or PWM(Pulse Width Modulation) techniques are used to control the output power of resonant inverters. And the resonant inverters have to control the output frequency for the reliable operation under the variable load conditions. In this paper, a new switching scheme is proposed as a resonant frequency following control of resonant inverters. With the proposed method. it can be obtained that optimum resonant frequency and unity output displacement factor under the variable resonant frequency adaptively. The detail algorithm of the proposed switching scheme and its characteristics are discussed. And the veridity of the proposed method is confirmed with the experimental results.

  • PDF

PLL Technique for Resonant Frequency Trancking in High Frequency Resonant Inverters (공진형 고주파 인버터에서의 공진주파수 추적을 위한 PLL 기법)

  • 김학성
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.368-371
    • /
    • 2000
  • The PLL(Phase-Locked Loop) techniques re employed to make the switching frequency of a resonant inverter follow the resonant frequency which may vary due to the load variations during operation. The conventional design guide of PLL is not suitable in these case since the inverter characteristics are not considered. In this paper the phase characteristics of a resonant inverter is analysed and added to the closed loop. And the design of PLL with digital phase detector is illustrated for the output frequency to track the resonant frequency of the inverter.

  • PDF

Design and Resonant Characteristics of the Ultrasonic Sensor for Gas Flowmeter (기체유량계용 초음파 센서의 설계 및 공진 특성)

  • Hong, Jae-Il;Lee, Sang-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.4
    • /
    • pp.193-197
    • /
    • 2002
  • In this paper, the ultrasonic sensor for gas flowmeter was simulated, fabricated and measured according to the assembly step and the piezoelectric vibrator layers. The simulated resonant frequency and the measured resonant frequency were similar except two layer sensor. The simulated resonant frequency of three layer sensor was 48 kHz and the measured resonant frequency of three layer sensor was 45.2 kHz. From the results, the ultrasonic sensor for gas flowmeter could be designed and expected without fabrication.

A Novel Auxiliary Edge-Resonant Snubber-Assisted Soft Switching PWM High Frequency Inverter with Series Capacitor Compensated Resonant Load for Consumer Induction Heating

  • Ahmed Nabil A.;Iwai Toshiaki;Omori Hideki;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.95-103
    • /
    • 2006
  • In this paper, a novel prototype of auxiliary switched capacitor assisted voltage source soft switching PWM Single-Ended Push Pull (SEPP) series capacitor compensated load resonant inverter with two auxiliary edge resonant lossless inductor snubbers is proposed and discussed for small scale consumer high-frequency induction heating (IH) appliances. The operation principle of this inverter is described by using switching mode equivalent circuits. The newly developed multi resonant high-frequency inverter using trench gate IGBTs can regulate its output AC power via constant frequency edge-resonant associated soft switching commutation by using an asymmetrical PWM control or duty cycle control scheme. The brand-new consumer IH products which use the newly proposed edge-resonant soft switching PWM-SEPP type series load resonant high-frequency inverters are evaluated using power regulation characteristics, actual efficiency vs. duty cycle and input power vs. actual efficiency characteristics. Their operating performance compared with some conventional soft switching high-frequency inverters for IH appliances is discussed on the basis of simulation and experimental results. The practical effectiveness of the newly proposed soft switching PWM SEPP series load resonant inverter is verified from an application point of view as being suitable for consumer high-frequency IH appliances.

Design of Optimal Resonant Frequency for Series-Loaded Resonant DC-DC Converter in EVs On-Board Battery Charger Application (전기자동차 탑재형 충전기용 부하직렬공진형 컨버터의 최적 공진주파수 설계)

  • Oh, Chang-Yeol;Kim, Jong-Soo;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.77-84
    • /
    • 2012
  • This paper describes the process of optimal resonant frequency design with full-bridge series-loaded resonant dc-dc converter in a high efficiency 3.3 kW on-board battery charger application for Electric Vehicles and Plug-in Hybrid Electric Vehicles. The optimal range of resonant frequency and switching frequency used for ZVS are determined by considering trade-off between loss of switching devices and resonant network with size of passive/magnetic devices. In addition, it is defined charging region of battery, the load of on-board charger, as the area of load by deliberating the characteristic of resonant. It is verified the designed frequency band by reflecting the defined area on resonant frequency.

Series Load Resonant Soft-Switching PWM High Frequency Inverter with Auxiliary Active Edge-Resonant Snubber

  • Saha, Bishwajit;Kim, Hun-Ho;Han, Ho-Dong;Kwon, Soon-Kurl;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.278-280
    • /
    • 2006
  • In this paper, a novel type of auxiliary active snubbingcircuit assisted quasi-resonant soft-switching pulse width modulation inverter is proposed for consumer induction heating equipments. The operation principle of this high frequency inverter is described using switching modes and equivalent circuits. This newly developed series resonant high frequency inverter can regulate its high frequency output AC power under a principle of constant frequency active edge resonant soft- switching commutation by asymmetrical PWM control system. The high frequency power regulation and actual power conversion efficiency characteristics of consumer induction heating (IH) products using the proposed soft-switching pulse width modulation (PWM) series load resonant high frequency inverter evaluated. The practical effectiveness and operating performance of high frequency inverter are discussion on the basis of simulation and experimental results as compared with the conventional soft-switching high frequency inverter.

  • PDF

Induction Heated Load Resonant Tank High Frequency Inverter with Asymmetrical Auxiliary Active Edge-Resonant Soft-Switching Scheme

  • Saha Bishwajit;Fathy Khairy;Kwon Soon-Kurl;Lee Hyun-Woo;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.200-202
    • /
    • 2006
  • In this paper, a novel type of auxiliary active snubbing circuit assisted quasi-resonant soft-switching pulse width modulation inverter is proposed for consumer induction heating equipments. The operation principle of this high frequency inverter is described using switching modes and equivalent circuits. This newly developed series resonant high frequency inverter can regulate its high frequency output AC power under a principle of constant frequency active edge resonant soft-switching commutation by asymmetrical PWM control system. The high frequency power regulation and actual power conversion efficiency characteristics of consumer induction heating (IH) products using the proposed soft-switching pulse width modulation (PWM) series load resonant high frequency inverter evaluated. The practical effectiveness and operating performance of high frequency inverter are discussion on the basis of simulation and experimental results as compared with the conventional soft-switching high frequency inverter.

  • PDF

Phase Angle Control in Resonant Inverters with Pulse Phase Modulation

  • Ye, Zhongming;Jain, Praveen;Sen, Paresh
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.332-344
    • /
    • 2008
  • High frequency AC (HFAC) power distribution systems delivering power through a high frequency AC link with sinusoidal voltage have the advantages of simple structure and high efficiency. In a multiple module system, where multiple resonant inverters are paralleled to the high frequency AC bus through connection inductors, it is necessary for the output voltage phase angles of the inverters be controlled so that the circulating current among the inverters be minimized. However, the phase angle of the resonant inverters output voltage can not be controlled with conventional phase shift modulation or pulse width modulation. The phase angle is a function of both the phase of the gating signals and the impedance of the resonant tank. In this paper, we proposed a pulse phase modulation (PPM) concept for the resonant inverters, so that the phase angle of the output voltage can be regulated. The PPM can be used to minimize the circulating current between the resonant inverters. The mechanisms of the phase angle control and the PPM were explained. The small signal model of a PPM controlled half-bridge resonant inverter was analyzed. The concept was verified in a half bridge resonant inverter with a series-parallel resonant tank. An HFAC power distribution system with two resonant inverters connected in parallel to a 500kHz, 28V AC bus was presented to demonstrate the applicability of the concept in a high frequency power distribution system.

Advanced Induction Heating Equipment using Dual Mode PWM-PDM Controlled Series Load Resonant Tank High Frequency Inverters

  • Fathy, Khairy;Kwon, Soon-Kurl;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.246-256
    • /
    • 2007
  • In this paper, a novel type auxiliary active edge resonant snubber assisted zero current soft switching pulse modulation Single-Ended Push Pull (SEPP) series load resonant inverter using IGBT power modules is proposed for cost effective consumer high-frequency induction heating (IH) appliances. Its operating principle in steady state is described by using each switching mode's equivalent operating circuits. The new multi resonant high-frequency inverter with series load resonance and edge resonance can regulate its high frequency output power under a condition of a constant frequency zero current soft switching (ZCS) commutation principle on the basis of the asymmetrical pulse width modulation (PWM) control scheme. Brand-new consumer IH products using the proposed ZCS-PWM series load resonant SEPP high-frequency inverter using IGBTs is evaluated and discussed as compared with conventional high-frequency inverters on the basis of experimental results. In order to extend ZCS operation ranges under a low power setting PWM as well as to improve efficiency, the high frequency pulse density modulation (PDM) strategy is demonstrated for high frequency multi-resonant inverters. Its practical effectiveness is substantially proved from an application point of view.

Control of Grid-Connected Inverters Using Adaptive Repetitive and Proportional Resonant Schemes

  • Abusara, Mohammad A.;Sharkh, Suleiman M.;Zanchetta, Pericle
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.518-529
    • /
    • 2015
  • Repetitive and proportional-resonant controllers can effectively reject grid harmonics in grid-connected inverters because of their high gains at the fundamental frequency and the corresponding harmonics. However, the performances of these controllers can seriously deteriorate if the grid frequency deviates from its nominal value. Non-ideal proportional-resonant controllers provide better immunity to variations in grid frequency by widening resonant peaks at the expense of reducing the gains of the peaks, which reduces the effectiveness of the controller. This paper proposes a repetitive control scheme for grid-connected inverters that can track changes in grid frequencies and keep resonant peaks lined up with grid frequency harmonics. The proposed controller is implemented using a digital signal processor. Simulation and practical results are presented to demonstrate the controller capabilities. Results show that the performance of the proposed controller is superior to that of a proportional-resonant controller.