DOI QR코드

DOI QR Code

Identification and Purification of New Brassinosteroid-Conjugates in Arabidopsis thaliana

애기장대 내 새로운 브라시노스테로이드 결합체의 분리 및 동정

  • Joo, Se-Hwan (Department of Life Science, Chung-Ang University) ;
  • Lee, Yew (Department of Biological Science Technology, Yonsei University) ;
  • Kim, Seong-Ki (Department of Life Science, Chung-Ang University)
  • 주세환 (중앙대학교 생명과학과) ;
  • 이유 (연세대학교 생명과학기술학부) ;
  • 김성기 (중앙대학교 생명과학과)
  • Received : 2011.02.07
  • Accepted : 2011.03.09
  • Published : 2011.05.30

Abstract

Metabolism of $^3H$-castasterone in the presence of $^{32}P$-ATP was examined by an enzyme solution prepared from A. thaliana after a reversed phased HPLC, after which a polar metabolite labeled by both $^3H$ and $^{32}P$ was obtained, suggesting that $^3H$-CS is phosphorylated by $^{32}P$-ATP. To elucidate the structure of the phosphorylated CS, the same enzyme assay was carried out with non-isotopes labeled CS and ATP. In GC-MS analysis the metabolite gave a molecular ion at m/z 664 as a bismethanboronate, suggesting the metabolite is a CS phosphate. Treatment of wheat germ acid phosphatase that hydrolyzed phosphoester bond gave the same mass spectrum and GC retention time in GC-MS analyses, confirming that the metabolite is phosphorylated CS. This is the first example of phosphorylated conjugates of CS in plants.

애기장대에서 추출한 효소원에 동위원소로 표지 된 $^{32}P$-ATP와 $^3H$-castasterone를 기질로 하여 효소반응을 수행하여 얻어진 생성물을 분석한 결과 $^3H$$^{32}P$의 활성이 동시에 검출되었다. 이 대사산물의 구조를 알아보고자 동위원소로 표지 되지 않은 CS, ATP를 이용하여 효소 반응하여 얻어진 대사산물의 GC-MS 분석결과 ion m/z 664의 값을 얻었는데, 이를 CS phosphate로 예상할 수 있었다. 상기의 대사산물 분획에 wheat germ acid phosphatase를 처리하여 phosphoester 결합을 깨뜨린 후 얻어진 생성물의 GC-MS 분석결과 CS의 spectrum을 얻을 수 있었는데 이를 통해 식물체 내 CS의 결합체로 인산화 된 형태가 존재할 가능성을 확인하였다.

Keywords

References

  1. Abe, H., S. Asakawa, and M. Natsume. 1996. Interconvertible metabolism between teasterone and its conjugate with fatty acid in cultured cells of lily. Proc. Plant. Growth. Reg. Soc. Am. 23, 9.
  2. Asakawa, S., H. Abe, Y. Hyokawa, S. Nakamura, and M. Natsume. 1994.Teasterone 3-myristate-A new type of brassinosteroid derivative in Lilium longiflorum anthers. Biosci. Biotechnol. Biochem. 58, 219-220. https://doi.org/10.1271/bbb.58.219
  3. Bajguz, A. and A. Tretyn. 2003. The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62, 1027-1046. https://doi.org/10.1016/S0031-9422(02)00656-8
  4. Fujioka, S. 1999. Natural occurrence of brassinosteroids in the plant kingdom. pp. 21-45, In Sakurai, A., T. Yokota, and S. D. Clouse. (eds.), Brassinosteroids: Steroidal Plant Hormones. Springer-Verlag, Tokyo.
  5. Hai, T., B. Schneider, and G. Adam. 1995. Metabolic conversion of 24-epi-brassinolide into pentahydroxylated brassinosteroid glucosides in tomato cell cultures. Phytochemistry 40, 443-448. https://doi.org/10.1016/0031-9422(95)00224-U
  6. Hai, T., B. Schneider, A. Porzel, and G. Adam. 1996. Metabolism of 24-epi-castasterone in cell suspension cultures of Lycopersicon esculentum. Phytochemistry 41, 197-201. https://doi.org/10.1016/0031-9422(95)00585-4
  7. Isaac, R. E., H. P. Desmond, and H. H. Rees. 1984. Isolation and identification of 3-acetylecdysone 2-phosphate, a metabolite of ecdysone, from developing eggs of Schistocerca gregaria. Biochem. J. 217, 239-243.
  8. Joo, S. H., J. Y. Hwang, C. H. Park, S. C. Lee, and S. K.Kim. 2009. Biosynthetic Connection of 24-Methylene- and 24-Methyl-brassinosteroids in Phaseolus vulgaris. Bull. Korean Chem. Soc. 30, 502-504. https://doi.org/10.5012/bkcs.2009.30.2.502
  9. Kim, Y. S., S. H. Joo, J. Y. Hwang, C. H. Park, and S. K. Kim. 2006. Characterization of C29-brassinosteroids and thier biosynthetic precursor in immature seeds of Phaseolus vulagris. Bull. Korean Chem. Soc. 27, 1117-1118. https://doi.org/10.5012/bkcs.2006.27.8.1117
  10. Kim, T. W., S. C. Chang, J. S. Lee, S. Takatsuto, T. Yokota, and S. K. Kim. 2004. Novel biosyntheic pathway of castasterone from cholesterol in tomato. Plant Physiol. 135, 1231-1242. https://doi.org/10.1104/pp.104.043588
  11. Kolbe, A., A. Porzel, B. Schneider, and G. Adam. 1997. Diglycosidic metabolites of 24-epi-teasterone in cell suspension cultures of Lycopersicon esculentum L. Phytochemistry 46, 1019-1022. https://doi.org/10.1016/S0031-9422(97)00390-7
  12. Kolbe, A., B. Schneider, A. Porzel, and G. Adam. 1998. Metabolic inversion of the 3-hydroxy function of brassinosteroids. Phytochemistry 48, 467-470. https://doi.org/10.1016/S0031-9422(98)00037-5
  13. Kolbe, A., B. Schneider, A. Porzel, J. Schmidt, and G. Adam. 1995. Acyl-conjugated metabolites of brassinosteroids in cell suspension cultures of Ornithopus sativus. Phytochemistry 38, 633-636. https://doi.org/10.1016/0031-9422(94)00742-C
  14. Lee, S. C., S. H. Joo, J. Y. Hwang, C. H. Park, S. H. Son, J. H. Youn, T. W. Kim, and S. K. Kim. 2011. Metabolism of 28-Homodolichosterone in Phaseolus vulgaris. Bull Korean Chem. Soc. In Press.
  15. Marsolais, F., J. Boyd, Y. Paredes, A. M. Schinas, M. Garcia, S. Elzein, and L. Varin. 2007. Molecular and biochemical characterization of two brassinosteroid sulfotransferases from Arabidopsis, AtST4a (At2g14920) and AtST1 (At2g03760). Planta 225, 1233-1244. https://doi.org/10.1007/s00425-006-0413-y
  16. Noguchi, T., S. Fujioka, S. Choe, S. Takatsuto, F. E. Tax, S. Yoshida, and K. A. Feldmann. 2000. Biosynthetic pathways of brassinolide in Arabidopsis. Plant Physiol. 124, 201-209. https://doi.org/10.1104/pp.124.1.201
  17. Rouleau, M., F. Marsolais, M. Richard, L. Nicolle, B. Voigt, G. Adam, and L. Varin. 1999. Inactivation of brassinosteroid biological activity by a salicylate-inducible steroid sulfotransferase from Brassica napus. J. Biol. Chem. 274, 20925-20930. https://doi.org/10.1074/jbc.274.30.20925
  18. Sakurai, A. 1999. Biosynthesis. pp. 137-161, In Sakurai, A., T. Yokota, and S. D. Clouse (eds.), Brassinosteroids: Steroidal Plant Hormones. Springer-Verlag, Tokyo.
  19. Strott, C. A. 1996. Steroid sulfotransferases. Endocr. Rev. 17, 670-697. https://doi.org/10.1210/edrv-17-6-670
  20. Wang, Z. Y., H. Seto, S. Fujioka, S. Yoshida, and J. Chory. 2001. BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410, 380-383. https://doi.org/10.1038/35066597
  21. Williams, D. R., J. H. Chen, M. J. Fisher, and H. H. Rees. 1997. Induction of enzymes involved in molting hormone (ecdysteroid) inactivation by ecdysteroids and anagonist, 1,2-dibenzoyl-1-tert-butylhydrazine (RH-5849). J. Biol. Chem. 272, 8427-8432. https://doi.org/10.1074/jbc.272.13.8427