DOI QR코드

DOI QR Code

Preparation of Porous TiO2 Thin Films by Poly(vinyl chloride)-graft-poly(N-vinyl pyrrolidone) and Their Applications to Dye-sensitized Solar Cells

  • Yeon, Seung-Hyeon (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Patel, Rajkumar (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Koh, Jong-Kwan (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Ahn, Sung-Hoon (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong-Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • Received : 2011.03.10
  • Accepted : 2011.04.25
  • Published : 2011.05.31

Abstract

Mesoporous titanium dioxide ($TiO_2$) thin films were prepared using poly(vinyl chloride)-graft-poly(N-vinyl pyrrolidone) (PVC-g-PVP) as a templating agent via sol-gel process. Grafting of PVC chains from PVC backbone was done by atom transfer radical polymerization (ATRP) technique. The successful grafting of PVP to synthesize PVC-g-PVP was checked by fourier-transform infrared spectroscopy (FT-IR) and gel permeation chromatography (GPC). The carbonyl group interaction of PVC-g-PVP graft copolymer with $TiO_2$ was confirmed by FT-IR. The porous morphologies of the $TiO_2$ films genereated after calcination at $450^{\circ}C$ was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The mesoporous $TiO_2$ films with 580 nm in thickness were used as a photoelectrode for solid state dye sensitized solar cell (DSSC) and showed an energy conversion efficiency of 1.05% at 100 $mW/cm^2$.

Keywords

References

  1. N. Yoshimoto, O. Shimamura, T. Nishimura, M. Egashira, M. Nichioka, and M. Morita, 'A novel polymeric electrolyte based on a copolymer containing self-assembled stearylate moiety for lithium-ion batteries' Electrochem. Commun., 11, 481 (2009). https://doi.org/10.1016/j.elecom.2008.12.030
  2. J. Lee, Y. Kim, and E. Kim, 'Electrochromic Property of a Conductive Polymer Film Fabricated with Vapor Phase Polymerization' Membrane Journal, 20, 8 (2010)
  3. B. L. Langsdorf, J. Sultan, and P. G. Pickup, 'Partitioning and polymerization of pyrrole into perfluorosulfonate (Nafion) membranes under neutral conditions' J. Phys. Chem. B, 107, 8412 (2003). https://doi.org/10.1021/jp035210n
  4. E.-M. Jung, Y.-W. Rhee, D.-H. Peck, B.-R. Lee, S.-K. Kim, and D.-H. Jung, 'Reduction of methanol crossover in a direct methanol fuel cell by using the Pt-coated electrolyte membrane' J. Electrochem. Soc. 11, 1 (2008). https://doi.org/10.5229/JKES.2008.11.1.001
  5. J. H. Kim, B. R. Min, J. Won, S. H. Joo, H. S. Kim, and Y. S. Kang, 'Role of polymer matrix in polymer/silver complexes for structure, interactions, and facilitated olefin transport' Macromolecules, 36, 6183 (2003). https://doi.org/10.1021/ma034314t
  6. T. Stergiopoulos, I. M. Arabatzis, G. Katsaros, and P. Falaras, 'Binary polyethylene oxide/titania quasi-solid-state redox electrolyte for highly efficient nanocrystalline $TiO_2$ photoelectrochemical cells' Nano Lett., 2, 1259 (2002). https://doi.org/10.1021/nl025798u
  7. J.-K. Lee and J.-J. Lee, 'Perspective of hybridization technology for next-generation solar cells' J. Electrochem. Soc. 13, 1 (2010). https://doi.org/10.5229/JKES.2010.13.1.001
  8. B. O'Reagan and M. Gratzel, 'A low-cost, high-efficiency solar cell based on dye-sensitized colloidal $TiO_2$ films' Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  9. J.E. Kroeze, N. Hirata, L. Schmidt-Mende, C. Orizu, S.D. Ogier, K. Carr, M. Gratzel, and J.R. Durrant, 'Parameters Influencing Charge Separation in Quasi-solid-state Dye-Sensitized Solar Cells Using Novel Hole Conductors' Adv. Fucnt. Mater., 16, 1832 (2006). https://doi.org/10.1002/adfm.200500748
  10. M. Wang, X. Xiao, X. Zhou, X. Li, and Y. Lin, 'Investigation of PEO-imidazole ionic liquid oligomer electrolytes for dye-sensitized solar cells' Sol. Energy Mater. Sol. Cells, 91, 785 (2007). https://doi.org/10.1016/j.solmat.2007.01.009
  11. N. Yamanaka, R. Kawano,W. Kubo, N. Masaki, T. Kitamura, Y. Wada, M. Watanabe, and S. Yanagida, 'Dye-Sensitized $TiO_2$ Solar Cells Using Imidazolium-Type Ionic Liquid Crystal Systems as Effective Electrolytes' J. Phys. Chem. B, 111, 4763 (2007). https://doi.org/10.1021/jp0671446
  12. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Gratzel, 'A stable quasi-quasi-solidstate dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte' Nature Mater., 2, 402 (2003). https://doi.org/10.1038/nmat904
  13. W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada, and S. Yanagida, 'Quasi-quasi-solid-state dye-sensitized $TiO_2$ solar cells: effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine' J. Phys. Chem. B, 105, 12809 (2001). https://doi.org/10.1021/jp012026y
  14. G. D. Sharma, P. Suresh, M. S. Roy, and J. A. Mikroyannidis, 'Effect of surface modification of $TiO_2$ on the photovoltaic performance of the quasi solid state dye sensitized solar cells using a benzothiadiazole-based dye' J. Power Sources, 195, 3011 (2010). https://doi.org/10.1016/j.jpowsour.2009.10.106
  15. J. A. Mikroyannidis, M. M. Stylianakis, M.S. Roy, P. Suresh, and G. D. Sharma, 'Synthesis, photophysics of two new perylene bisimides and their photovoltaic performances in quasi solid state dye sensitized solar cells' J. Power Sources, 194, 1171 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.002
  16. M. Li, S. Feng, S. Fang, X. Xiao, X. Li, X. Zhou, and Y. Lin, 'The use of poly(vinylpyridine-co-acrylonitrile) in polymer electrolytes for quasi-solid dye-sensitized solar cells' Electrochim. Acta, 52, 4858 (2007). https://doi.org/10.1016/j.electacta.2007.01.027
  17. J. N. Freitas, A. S. Gonçalves, M. A. Paoli, J. R. Durrant, and A. F. Nogueira, 'The role of gel electrolyte composition in the kinetics and performance of dye-sensitized solar cells' Electrochim. Acta, 53, 7166 (2008). https://doi.org/10.1016/j.electacta.2008.05.009
  18. I. C. Flores, J. N. Freitas, C. Longo, M. A. Paoli, H. Winnischofer, and A. F. Nogueira, 'Dye-sensitized solar cells based on $TiO_2$ nanotubes and a quasi-solid-state electrolyte' J. Photochem. Photobio. A: Chem. 189, 153 (2007). https://doi.org/10.1016/j.jphotochem.2007.01.023
  19. J. E. Benedetti, M. A. Paoli, and A. F. Nogueira, 'Enhancement of photocurrent generation and open circuit voltage in dye-sensitized solar cells using Li+ trapping species in the gel electrolyte' Chem. Commun., 9, 1121 (2008).
  20. J. K. Koh, J. H. Koh, S. H. Ahn, J. H. Kim, and Y. S. Kang, 'Quasi-solid-state dye-sensitized solar cells employing one-pot synthesized supramolecular electrolytes with multiple hydrogen bonding' Electrochim. Acta, 55, 2567 (2010). https://doi.org/10.1016/j.electacta.2009.12.035
  21. J. H. Koh, J. K. Koh, N. G. Park, and J. H. Kim, 'Azideinduced crosslinking of electrolytes and its application in quasi-solid-state dye-sensitized solar cells' Sol. Energy Mater. Sol. Cells, 94, 436 (2010). https://doi.org/10.1016/j.solmat.2009.10.024
  22. D. H. Cho, Y. Y. Jung, M. H. Yun, S. Y. Kwon, and J. K. Koo, 'Effect of plasticizer on electrolyte membranes for dye sensitized solar cells' Membrane Journal, 20, 13 (2010).
  23. T. Kang, C. H. Shin, M.-J. Choi, J. K. Koo, and N. Cho, 'A study on the ionic conducting characteristics of electrolyte membranes containing KI and I2 for dye sensitized solar cell' Membrane Journal, 20, 21 (2010).
  24. Y. Kotani, T. Matoda, A. Matsuda, T. Kogure, M. Tatsumisago, and T. Minami, 'Anatase nanocrystaldispersed thin films via sol-gel process with hot water treatment: effects of poly(ethylene glycol) addition on photocatalytic activities of the films' J. Mater. Chem. 11, 2045 (2001). https://doi.org/10.1039/b103043b
  25. P. D. Yang, D. Y. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, 'Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework' Chem. Mater., 11, 2813 (1999). https://doi.org/10.1021/cm990185c
  26. H. C. Kim, X. Jia, C. M. Stafford, D. H. Kim, T. J. McCarthy, M. Tuominen, C. J. Hawker, and T. P. Russell, 'A route to nanoscopic $SiO_2$ posts via block copolymer templates' Adv. Mater., 13, 795 (2001). https://doi.org/10.1002/1521-4095(200106)13:11<795::AID-ADMA795>3.0.CO;2-1
  27. A. M. Urbas, M. Maldovan, P. DeRege, and E. L. Thomas, 'Bicontinuous cubic block copolymer photonic crystals' Adv. Mater., 14, 1850 (2002). https://doi.org/10.1002/adma.200290018
  28. S. W. Yeh, K. H. Wei, Y. S. Sun, U. S. Jeng, and K. S. Liang, 'Morphological transformation of PS-b-PEO diblock copolymer by selectively dispersed colloidal CdS quantum dots' Macromolecules, 36, 7903 (2003). https://doi.org/10.1021/ma034800g
  29. A. W. Fahmi, H. G. Braun, and M. Stamm, 'Fabrication of metallized nanowires from self-assembled diblock copolymer templates' Adv. Mater., 15, 1201 (2003). https://doi.org/10.1002/adma.200304995
  30. C. Liang, K. Hong, G. A. Guiochon, J. W. Mays, and S. Dai, 'Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers' Angew. Chem. Int. Ed., 43, 5785 (2004) https://doi.org/10.1002/anie.200461051
  31. S. H. Ahn, J. H. Koh, and J. A. S. J. H. Kim, 'Structure control of organized mesoporous $TiO_2$ films templated by graft copolymers for dye-sensitized solar cells' Chem. Commun., 46, 1935 (2010). https://doi.org/10.1039/b919215h
  32. S. H. Ahn, H. Jeon, K. J. Son, H. Ahn, W. G. Koh, D. Y. Ryu, and J. H. Kim, 'Efficiency improvement of dyesensitized solar cells using graft copolymer-templated mesoporous $TiO_2$ films as an interfacial layer' J. Mater. Chem., 21, 1772 (2011). https://doi.org/10.1039/c0jm02706e
  33. J. T. Park, D. K. Roh, R. Patel, E. Kim, D. Y. Ryu, and J. H. Kim, 'Preparation of $TiO_2$ spheres with hierarchical pores via grafting polymerization and sol-gel process for dye-sensitized solar cells' J. Mater. Chem., 20, 8521 (2010). https://doi.org/10.1039/c0jm01471k
  34. D. K. Roh, J. T. Park, S. H.Ahn, D. Y. Ryu, and J. H. Kim, 'Amphiphilic poly(vinyl chloride)-g-poly(oxyethylene methacrylate) graft polymer electrolytes: Interactions, nanostructures and applications to dye-sensitized solar cells' Electrochem. Acta, 55, 4976 (2010). https://doi.org/10.1016/j.electacta.2010.03.106
  35. K. J. Lee, J. T. Park, J. H. Goh, and J. H. Kim, 'Synthesis of amphiphilic graft copolymer brush and its use as template film for the preparation of silver nanoparticles' J. Polym. Sci. A: Polym. Chem., 46, 3911 (2008). https://doi.org/10.1002/pola.22718
  36. J. K. Koh, J. A. Seo, J. H. Koh, and J. H. Kim, 'Templated synthesis of Ag loaded $TiO_2$ nanostructures using amphiphilic polyelectrolyte' Mater. Lett., 63, 1360 (2009). https://doi.org/10.1016/j.matlet.2009.03.016
  37. G. Martinez, M. A. Gomez, R. Gomez, and J. L. Segura, 'Synthesis of a [60] fullerene-functionalized poly(vinyl chloride) derivative by stereospecific chemical modification of PVC' J. Polym. Sci. A: Polym. Chem., 45, 5408 (2007). https://doi.org/10.1002/pola.22285
  38. C. C. Weng and K. H. Wei, 'Selective distribution of surface-modified $TiO_2$ nanoparticles in polystyrene-b-poly (methyl methacrylate) diblock copolymer' Chem. Mater., 15, 2936 (2003). https://doi.org/10.1021/cm0300617
  39. Z. Sun, D. H. Kim, M. Wolkenhauer, G. G. Bumbu, W. Knoll, and J. S. Gutmann 'Synthesis and photoluminescence of titania nanoparticle arrays templated by block-copolymer thin films' Chem. Phys. Chem., 7, 370 (2006). https://doi.org/10.1002/cphc.200500340
  40. P. C. A. Alberius, K. L. Frindell, R. C. Hayward, E. J. Kramer, G. D. Stucky, and B. F. Chmelka, 'General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films' Chem. Mater., 14, 3284 (2002). https://doi.org/10.1021/cm011209u
  41. P. Falaras, T. Stergiopoulos, and D. S. Tsoukleris, 'Enhanced efficiency in quasi-solid-state dye-sensitized solar cells based on fractal nanostructured $TiO_2$ thin films' Small, 4, 770 (2008). https://doi.org/10.1002/smll.200700347
  42. M. Nedelcu, J. W. Lee, E. J. W. Crossland, S. C. Warren, M. C. Orilall, S. Guldin, S. Huttner, C. Ducati, D. Eder, U. Wiesner, U. Steiner, and H. J. Snaith, 'Block-copolymer directed synthesis of mesoporous $TiO_2$ for dye-sensitized solar cells' Soft Matter, 5, 134 (2009). https://doi.org/10.1039/b815166k
  43. Z. S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, 'Significant influence of $TiO_2$ photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell' Coordination Chem. Rev., 248, 1381 (2004). https://doi.org/10.1016/j.ccr.2004.03.006
  44. G. Schlichtho1rl, N. G. Park, and A. J. Frank, 'Evaluation of the charge-collection efficiency of dye-sensitized nanocrystalline $TiO_2$ solar cells' J. Phys. Chem. B, 103, 782 (1999). https://doi.org/10.1021/jp9831177

Cited by

  1. Novel sol-gel synthesis route of carbide-derived carbon composites for very high power density supercapacitors vol.320, 2017, https://doi.org/10.1016/j.cej.2017.03.081
  2. Diversification of photoelectric efficiency on DSSCs assembled according to the change of coating layers of Px-TiO2 films vol.136, pp.2-3, 2012, https://doi.org/10.1016/j.matchemphys.2012.08.026
  3. Highly efficient dye-sensitized solar cell developed by using sheet like TiO2 prepared by a novel route vol.139, pp.2-3, 2013, https://doi.org/10.1016/j.matchemphys.2013.02.001