DOI QR코드

DOI QR Code

Finite element analysis of effectiveness of lever arm in lingual sliding mechanics

Lingual sliding mechanics의 lever arm 효과에 대한 유한요소분석

  • Received : 2010.11.24
  • Accepted : 2011.05.13
  • Published : 2011.10.30

Abstract

Objective: The aim of this study was to conduct three-dimensional finite element analysis of individual tooth displacement and stress distribution when a posterior retraction force of 200 g was applied at different positions of the retraction hook on the transpalatal arch (TPA) of a molar, and over different lengths of the lever arm on the maxillary anterior teeth in lingual orthodontics. Methods: A three-dimensional finite element model, including the entire upper dentition, periodontal ligaments, and alveolar bones, was constructed on the basis of a sample (Nissan Dental Product, Kyoto, Japan) survey of Asian adults. Individual movement of the incisal edge and root apex was estimated along the x-, y-, and z-coordinates to analyze tooth displacement and von Mises stress distribution. Results: When the length of the lever arm was 15 mm and 20 mm, the incisal edge and root apex of the anterior teeth was displaced lingually, with a maximum lingual displacement at the lever arm length of 20 mm. When the posterior retraction hook was on the root apex, the molars showed distal displacement. When the length of the lever arm was 20 mm, anterior extrusion was reduced and the crown of the canine displaced toward the buccal side, in which case, the retraction hook was on the edge, rather than at the center, of the TPA. Conclusions: The results of the analysis showed that when 6 anterior teeth were retracted posteriorly, lateral displacement of the canine and lingual displacement of the incisal edge and root apex of the anterior teeth occur without the extrusion of the anterior segment when the length of the lever arm is longer, and the posterior retraction hook is in the midpalatal area.

전치의 후방 견인 시 적절한 치아 이동 상태 조절은 필수적이다. 설측 장치를 이용한 레버 암 길이의 조절을 통하여 치아 이동에 관한 연구는 있었으나 3차원적인 변위 양상에 대한 연구는 많이 이루어지지 않은 실정이다. 이에 본 연구는 상악 전치부의 레버 암(lever arm)의 길이를 5 mm 단위로 20 mm까지 증가시켰으며 대구치와 TPA (trans palatal arch) 상에 있는 견인 훅(hook)의 위치를 달리 하여 200 gm의 후방 견인력을 가했을 때 나타나는 치아 변위 양상과 응력분포를 3차원적 유한요소분석을 통하여 알아보고자 하였다. 이를 위하여 아시아 성인의 표본조사를 통해 제작된 치아모형(Nissan Dental Product, Kyoto, Japan)을 3차원적으로 스캐닝한 후 상악치아, 치주인대, 치조골에 대한 유한요소 모델을 제작하였다. 각 치아의 절단연과 치근첨의 이동량을 x, y, z 좌표에서 각각 계산하여 치열의 변위 양상을 분석하고 von Mises 응력 분포를 계측하였다. 연구 결과, 정상 교합 모형의 레버 암 길이가 15 mm, 20 mm인 경우 전치 절단연과 치근첨의 설측 변위가 유도되었다. 본 실험의 조건 중 20 mm에서 치근첨의 설측 변위는 최대로 나타났다. 구치부 견인 훅이 치근첨에 있을 때 대구치 치관은 원심 방향으로 변위되었다. 또한 레버 암의 길이가 20 mm인 경우 전치부의 정출은 미약하였고 견치 치관은 협측 방향으로 전위되었다. 이 때 구치부 견인 훅의 위치가 TPA의 구개 중앙 측에 있을 때보다 가장자리 측에 있을 때 견치 치관은 더 많이 전위되었다. 이상의 결과를 토대로 설측 장치를 이용한 상악 6전치의 후방 견인 시 레버 암의 길이가 길고 구치부 견인 훅의 위치가 구개 중앙부에 있을 때 전치부 절단연(incisal edge)의 정출 없이 견치의 측방 전위 및 전치부 절단연과 치근첨의 설측 변위가 공히 나타남을 알 수 있었다.

Keywords

References

  1. Liang W, Rong Q, Lin J, Xu B. Torque control of the maxillary incisors in lingual and labial orthodontics: a 3-dimensional finite element analysis. Am J Orthod Dentofacial Orthop 2009;135:316-22. https://doi.org/10.1016/j.ajodo.2007.03.039
  2. Kucher G, Weiland FJ, Bantleon HP. Modified lingual lever arm technique. J Clin Orthod 1993;27:18-22.
  3. Park YC, Choy K, Lee JS, Kim TK. Lever-arm mechanics in lingual orthodontics. J Clin Orthod 2000;34:601-5.
  4. Sia S, Koga Y, Yoshida N. Determining the center of resistance of maxillary anterior teeth subjected to retraction forces in sliding mechanics. An in vivo study. Angle Orthod 2007;77:999-1003. https://doi.org/10.2319/112206-478
  5. Lewis G, Kambhampati S, Roussel S. Effect of the archwire slot profile on the performance of bonded orthodontic brackets. Biomed Mater Eng 1997;7:205-12.
  6. Burstone CJ, Pryputniewicz RJ. Holographic determination of centers of rotation produced by orthodontic forces. Am J Orthod 1980;77:396-409. https://doi.org/10.1016/0002-9416(80)90105-0
  7. Pedersen E, Andersen K, Melsen B. Tooth displacement analysed on human autopsy material by means of a strain gauge technique. Eur J Orthod 1991;13:65-74. https://doi.org/10.1093/ejo/13.1.65
  8. Reimann S, Keilig L, Jäger A, Bourauel C Biomechanical finite-element investigation of the position of the centre of resistance of the upper incisors. Eur J Orthod 2007;29:219-24. https://doi.org/10.1093/ejo/cjl086
  9. Kim CN, Sung JH, Kyung HM. Three-dimensional finite element analysis of initial tooth displacement according to force application point during maxillary six anterior teeth retraction using skeletal anchorage. Korean J Orthod 2003;33:339-50.
  10. Andrews LF. The six keys to normal occlusion. Am J Orthod 1972;62:296-309. https://doi.org/10.1016/S0002-9416(72)90268-0
  11. Coolidge E. The thickness of the human periodontal membrane. J Am Dent Assoc 1937;24:1260-5.
  12. Kronfeld R. Histologic study of the influence of function on the human periodontal membrane. J Am Dent Assoc 1931;18:1242-72.
  13. Andrews LF. The six keys to optimal occlusion. In: Andrews LF editor. Straight wire: the concept and appliance. San Diego: LA Wells; 1989. p. 13-24.
  14. Cook SD, Weinstein AM, Klawitter JJ. A three-dimensional finite element analysis of a porous rooted Co-Cr-Mo alloy dental implant. J Dent Res 1982;61:25-9. https://doi.org/10.1177/00220345820610010501
  15. Tanne K, Sakuda M, Burstone CJ. Three-dimensional finite element analysis for stress in the periodontal tissue by orthodontic forces. Am J Orthod Dentofacial Orthop 1987;92:499-505. https://doi.org/10.1016/0889-5406(87)90232-0
  16. Sung SJ, Baik HS, Moon YS, Yu HS, Cho YS. A comparative evaluation of different compensating curves in the lingual and labial techniques using 3D FEM. Am J Orthod Dentofacial Orthop 2003;123:441-50. https://doi.org/10.1067/mod.2003.9
  17. Bennett JC, McLaughlin RP. Controlled space closure with a preadjusted appliance system. J Clin Orthod 1990;24:251-60.
  18. Alexander CM, Alexander RG, Gorman JC, Hilgers JJ, Kurz C, Scholz RP, et al. Lingual orthodontics: a status report. Part 5. Lingual mechanotherapy. J Clin Orthod 1983;17:99-115.
  19. Smith JR, Gorman JC, Kurz C, Dunn RM. Keys to success in lingual therapy. Part 1. J Clin Orthod 1986;20:252-61.
  20. Smith RJ, Burstone CJ. Mechanics of tooth movement. Am J Orthod 1984;85:294-307. https://doi.org/10.1016/0002-9416(84)90187-8
  21. Davidian EJ. Use of a computer model to study the force distribution on the root of the maxillary central incisor. Am J Orthod 1971;59:581-8. https://doi.org/10.1016/0002-9416(71)90004-2
  22. Burstone CJ, Koenig HA. Optimizing anterior and canine retraction. Am J Orthod 1976;70:1-19. https://doi.org/10.1016/0002-9416(76)90257-8
  23. Vanden Bulcke MM, Burstone CJ, Sachdeva RC, Dermaut LR. Location of the centers of resistance for anterior teeth during retraction using the laser reflection technique. Am J Orthod Dentofacial Orthop 1987;91:375-84. https://doi.org/10.1016/0889-5406(87)90390-8
  24. Woo JY, Park YC Experimental study of the vertical location of the centers of resistance for maxillary anterior teeth during retraction using the laser reflection technique. Korean J Orthod 1993;23:375-89.
  25. Park GH, Sohn BW. The center of resistance of the maxillary anterior segment in the horizontal plane during intrusion by using laser reflection technique. Korean J Orthod 1993;23:619-31.
  26. Lee HK, Chung KR. The vertical location of the center of resistance for maxillary six anterior teeth during retraction using three dimensional finite element analysis. Korean J Orthod 2001;31:425-38.
  27. Jeong GM, Sung SJ, Lee KJ, Chun YS, Mo SS. Finite-element investigation of the center of resistance of the maxillary dentition. Koran J Orthod 2009;39:83-94. https://doi.org/10.4041/kjod.2009.39.2.83
  28. Tanne K, Yoshida S, Kawata T, Sasaki A, Knox J, Jones ML. An evaluation of the biomechanical response of the tooth and periodontium to orthodontic forces in adolescent and adult subjects. Br J Orthod 1998;25:109-15. https://doi.org/10.1093/ortho/25.2.109
  29. Andersen KL, Pedersen EH, Melsen B. Material parameters and stress profiles within the periodontal ligament. Am J Orthod Dentofacial Orthop 1991;99:427-40. https://doi.org/10.1016/S0889-5406(05)81576-8
  30. Cobo J, Argüelles J, Puente M, Vijande M. Dentoalveolar stress from bodily tooth movement at different levels of bone loss. Am J Orthod Dentofacial Orthop 1996;110:256-62. https://doi.org/10.1016/S0889-5406(96)80008-4

Cited by

  1. A finite element analysis of the effects of archwire size on orthodontic tooth movement in extraction space closure with miniscrew sliding mechanics vol.20, pp.1, 2011, https://doi.org/10.1186/s40510-018-0255-8