DOI QR코드

DOI QR Code

실기간 소음제거를 위한 IGC Algorithm의 LabVIEW FPGA 구현

Labview FPGA Implementation of IGC Algorithm for Real Time Noise Cancelation

  • 김춘식 (대구대학교 정보통신공학과) ;
  • 이채욱 (대구대학교 정보통신공학과)
  • 투고 : 2011.01.12
  • 심사 : 2011.03.18
  • 발행 : 2011.03.31

초록

LMS알고리즘은 강인성, 높은 추성, 구현의 단순성 때문에 많이 사용되고 있지만, 비균일적 수렴과 EMSE사이에 trade-off를 가진다. 이러한 단점을 극복하기 위해 가변 스텝 사이즈 알고리즘 방식이 사용되는데, 많은 계산량을 필요로 한다. 본 논문에서 제안하는 IGC 알고리즘은 원 신호와 잡음신호의 순시이득값을 사용함으로서, 계산량을 줄이고, 주위 환경변화에도 안정적으로 적용할 수 있다. 실시간 처리를 위하여 IGC 알고리즘에서 log함수를 제거하여, 실제로 자동차 소음제거기에 적용하여 제안한 알고리즘의 성능을 확인하였다. 그리고 Labview FPGA 구현을 하여, 기존의 다른 알고리즘과 비교하여 효율적이라는 것을 입증하였다.

The LMS(Least Mean Square) algorithm is generally used because of tenacity, high mating spots and simplicity of realization. But the LMS algorithm has trade-off between nonuniform collect and EMSE(Excess Mean Square Error). To overcome this weakness, variable step size is used widely but it needs a lot of calculation load. In this paper we consider new algorithm, which can reduce calculations and adapt in case of environment changes, uses original signal and noise signal of IGC(Instantaneous Gain Control). For the real time processing of IGC algorithm, we remove the logarithmic function. The performance of proposed algorithm is tested to adaptive noise canceller in automobile. We show implemented LabVIEW FPGA system of IGC algorithm is more efficient than others.

키워드

참고문헌

  1. Greenberg, J. E., Modified LMS algorithms for speech processing with an adaptive noise canceller, IEEE Trans. Speech Audio Processing, Vol.6, No.4, pp.338-351, 1998. https://doi.org/10.1109/89.701363
  2. Haykin, S., Adaptive Filter Theory, 4th ed., Upper Saddle River, NJ: Prentice Hall, 2002.
  3. Ikeda, S. and A. Sugiyama, An adaptive noise canceller with low signal distortion for speech codecs, IEEE Trans. Signal Processing, Vol.47, No.3, pp.665-674, 1999. https://doi.org/10.1109/78.747774
  4. Hongyan, C., S. Chongfei, X. Xiaobo, H. Yong and K. D. Luk, Study on Adaptive Noise canceller on Fixed-Point Algorithm for Real-Time Somatosensory Evoked Potential Monitoring, ICBBE 2008, pp.3274-3277, 2008.
  5. Boll, S. F. and D. C. Pulsipher, Suppression of acoustic noise in speech using two microphone adaptive noise cancellation, IEEE Trans. Acoust., Speech, Signal Processing, Vol.ASSP-28, No.6, 1980.
  6. Kim, Dai I. and P. De Wild, Performance analysis of the DCT-LMS adaptive filtering algorithm, Signal Processing, Vol.80, No.8, pp.1629-1654, 2000. https://doi.org/10.1016/S0165-1684(00)00098-0
  7. Wallace, R. B. and R. A. Goubran, Improved tracking adaptive noise canceller for nonstationary environments, IEEE Trans. Signal Processing, Vol.40, No.30, pp.700-703, 1992. https://doi.org/10.1109/78.120817
  8. Ho, K. C., A minimum misadjustment adaptive FIR filter, IEEE Trans. Signal Processing, Vol.44, No.3, pp.577-585, 1996. https://doi.org/10.1109/78.489031
  9. Maxwell, J. A. and P. M. Zurek, Reducing acoustic feedback in hearing aids, IEEE Trans. Speech Audio Processing, Vol.3, No.4, pp.304-313, 1995. https://doi.org/10.1109/89.397095
  10. Al-Saleh, M. A., Fast tracking two stage adaptive noise canceller, IEEE Region 10 Conference TENCON, pp.606-609, 2004.
  11. Anrikulu, O. and A. G. Constantinides, The LMS algorithm with time-varying forgetting factor for adaptive system identification in additive output noise, ICASSP 96, pp.1851-1854, 1996.
  12. Delgado, R. E., O. Ozadmar, S. Rahman and C. N. Lopez, Adaptive noise cancellation in a multimicrophone system for distortion product otoacoustic emission acquisition, IEEE Trans. Biomedical Engineering, Vol.47, No.9, pp.1154-1164, 2000. https://doi.org/10.1109/10.867919
  13. Kim, Joonwan and A. D. Poularikas, Comparison of two proposed methods in adaptive noise canceling, IEEE SSST 2003, pp.400-403, 2003.
  14. Liavas, A. P. and D. Tsipouridou, On the performance of the Mismatched MMSE and the LS Linear Equalizers, IEEE Trans. Acoustics, Speech, Signal Processing, Vol.55, No.7, pp.3302-3311, 2007. https://doi.org/10.1109/TSP.2007.894392