DOI QR코드

DOI QR Code

Hydriding and Dehydriding Rates of Magnesium-Nickel Alloy Fabricated by Milling under Hydrogen

수소 분위기에서 밀링에 의해 제조한 마그네슘-니켈 합금의 수소화물 형성 및 분해 속도

  • Song, Myoung-Youp (Division of Advanced Materials Engineering, Department of Hydrogen and Fuel Cells, Research Center of Advanced Materials Development, Engineering Research Institute, Chonbuk National University) ;
  • Baek, Sung-Hwan (Division of Advanced Materials Engineering, Department of Hydrogen and Fuel Cells, Research Center of Advanced Materials Development, Engineering Research Institute, Chonbuk National University) ;
  • Park, Hye-Ryoung (School of Applied Chemical Engineering, Chonnam National University)
  • 송명엽 (전북대학교 신소재공학부) ;
  • 백성환 (전북대학교 신소재공학부) ;
  • 박혜령 (전남대학교 응용화학공학부)
  • Received : 2011.10.24
  • Accepted : 2011.12.27
  • Published : 2011.12.31

Abstract

A 76.5wt%Mg - 23.5wt%Ni (Mg-23.5Ni) sample was prepared by reactive mechanical grinding (RMG) and its hydriding and dehydriding properties were then investigated. Activation of the Mg-23.5Ni sample was completed only after two hydriding (under 12 bar $H_2$) - dehydriding (under 1.0 bar $H_2$) cycles at 593K. The reactive mechanical grinding of Mg with Ni is considered to facilitate nucleation and shorten diffusion distances of hydrogen atoms. After hydriding - dehydriding cycling, the Mg-23.5Ni sample contained Mg2Ni phase.

Keywords

References

  1. J. J. Reilly and R. H. Wiswall, Inorg. Chem., Vol. 6, No. 12, 1967, p. 2220. https://doi.org/10.1021/ic50058a020
  2. J. J. Reilly and R. H. Wiswall Jr, Inorg. Chem., Vol. 7, No. 11, 1968, p. 2254. https://doi.org/10.1021/ic50069a016
  3. M. H. Mintz, Z. Gavra and Z. Hadari, J. Inorg. Nucl. Chem., Vol. 40, 1978, p. 765. https://doi.org/10.1016/0022-1902(78)80147-X
  4. M. Pezat, A. Hbika, B. Darriet and P. Hagenmuller, Mater. Res. Bull., Vol. 14, 1979, p. 377. https://doi.org/10.1016/0025-5408(79)90103-X
  5. S. H. Hong, J. S. Bae, C. D. Yim, Y. S. Na, M. Y. Song, Transactions of the. Korean Hydrogen and New Energy Society, Vol. 17, No. 2, 2006, p. 174.
  6. S. Seok, K. W. Cho, T. W. Hong, Trans. of the Korean Hydrogen and New Energy Society, Vol. 18, No. 1, 2007, p. 26.
  7. J. H. Kim, D. K. Choi, K. T. Hwang, J. S. Han, J. H. Kim, Trans. of the Korean Hydrogen and New Energy Society, Vol. 21, No. 2, 2010, p. 123.
  8. M. W. Jung, J. H. Park, K. W. Cho, K. I. Kim, Trans. of the Korean Hydrogen and New Energy Society, Vol. 21, No. 1, 2010, p. 58.
  9. K. I. Kim, Y. S. Kim, T. W. Hong, Trans. of the Korean Hydrogen and New Energy Society, Vol. 21, No. 2, 2010, p. 81.
  10. B. Tanguy, J. L. Soubeyroux, M. Pezat, J. Portier and P. Hagenmuller, Mater. Res. Bull., Vol. 11, 1976, p. 1441. https://doi.org/10.1016/0025-5408(76)90057-X
  11. F. G. Eisenberg, D. A. Zagnoli and J. J. Sheridan III, J. Less-Common Met., Vol. 74, 1980, p. 323. https://doi.org/10.1016/0022-5088(80)90170-8
  12. K. D. Park, J. S. Han, J. H. Kim, B. G. Kim, Trans. of the Korean Hydrogen and New Energy Society, Vol. 22, No. 3, 2011, p. 380.
  13. M. Y. Song, J. Mater. Sci., Vol. 30, 1995, p. 1343. https://doi.org/10.1007/BF00356142
  14. M.Y. Song, E.I. Ivanov, B. Darriet, M. Pezat and P. Hagenmuller, Int. J. Hydrogen Energy, Vol. 10, No. 3, 1985, p. 169. https://doi.org/10.1016/0360-3199(85)90024-2
  15. M.Y. Song, E. I. Ivanov, B. Darriet, M. Pezat and P. Hagenmuller, J. Less-Common Met., Vol. 131, 1987, p. 71. https://doi.org/10.1016/0022-5088(87)90502-9
  16. M.Y. Song, Int. J. Hydrogen Energy, Vol. 20, No. 3, 1995, p. 221. https://doi.org/10.1016/0360-3199(94)E0024-S
  17. J.-L. Bobet, E. Akiba, Y. Nakamura and B. Darriet, Int. J. Hydrogen Energy, Vol. 25, 2000. p. 987. https://doi.org/10.1016/S0360-3199(00)00002-1
  18. C. D. Yim, B. S. You, Y. S. Na, J. S. Bae, Catalysis Today, Vol. 120, 2007, p. 276. https://doi.org/10.1016/j.cattod.2006.09.020
  19. M. Y. Song, S. H. Baek, J.-L. Bobet, and S. H. Hong, Int. J. Hydrogen Energy, Vol. 35, 2010, p. 10366. https://doi.org/10.1016/j.ijhydene.2010.07.161