DOI QR코드

DOI QR Code

Restrictions on the Entries of the Maps in Free Resolutions and $SC_r$-condition

  • Lee, Kisuk (Department of Mathematics, Sookmyung Women's University)
  • 투고 : 2011.10.18
  • 심사 : 2011.12.22
  • 발행 : 2011.12.30

초록

We discuss an application of 'restrictions on the entries of the maps in the minimal free resolution' and '$SC_r$-condition of modules', and give an alternative proof of the following result of Foxby: Let M be a finitely generated module of dimension over a Noetherian local ring (A,m). Suppose that $\hat{A}$ has no embedded primes. If A is not Gorenstein, then ${\mu}_i(m,A){\geq}2$ for all i ${\geq}$ dimA.

키워드

참고문헌

  1. W. Bruns and J. Herzog, "Cohen-Macaulay rings", Camb. Stud. Adv. Math., Cambridge Univ. Press, Cambridge, Vol. 39, 1993
  2. H. B. Foxby, "On the ${\mu}i$ in a minimal injective resolution II", Math. Scand., Vol. 41, pp. 19-44, 1977. https://doi.org/10.7146/math.scand.a-11700
  3. M. Hochster, "Cyclic purity versus purity in excellent Noetherian rings", Trans. Amer. Math. Soc., Vol. 231, pp. 463-488, 1977. https://doi.org/10.1090/S0002-9947-1977-0463152-5
  4. J. Koh, "$SC_r$ Modules over local rings", J. Alg., Vol. 239, pp. 589-605, 2001. https://doi.org/10.1006/jabr.2000.8694
  5. J. Koh and K. Lee, "Some restrictions on the maps in minimal resolutions", J. Alg., Vol. 202, pp. 671-689, 1998. https://doi.org/10.1006/jabr.1997.7310
  6. L. Melkersson, "Small conite irreducibles", J. Alg., Vol. 196, No. 2, pp. 630-645, 1997. https://doi.org/10.1006/jabr.1997.7105
  7. P. Roberts, "Homological invariants of modules over commutative rings", Sm. Math. Sup. Univ. Montral., 1980.