충남 부여지역의 홀로세 기후변화 -탄소동위원소분석과 대자율분석을 이용하여-

Holocene Environments of the Buyeo Area Choongnam Province: Reconstructed from Carbon Isotopic and Magnetic Evidences from Alluvial Sequences

  • 박경 (성신여자대학교 사회과학대 지리학과) ;
  • 박지훈 (공주대학교 사범대학 지리교육과)
  • Park, Kyeong (Dept. of Geography, Sungshin Women's University) ;
  • Park, Ji-Hoon (Dept. of Geography Education, Kongju National University)
  • Received : 2011.05.19
  • Accepted : 2011.06.27
  • Published : 2011.08.31

Abstract

충남 부여지역의 홀로세(약 8,400 yrs B.P.~현재) 기간의 환경 특히 기후환경을 복원하기 위하여 부여군 가탑리 일대에 분포하는 선상지 퇴적물을 대상으로 탄소동위원소분석과 대자율분석을 실시하였다. 탄소동위원소분석 결과에 의하면, 조사지역에서는 크게 5회의 기후변화가 확인되었는데 I기(期)부터 VI기(期)로 가면서 가장 냉량 건조${\rightarrow}$온난 습윤${\rightarrow}$냉량 건조${\rightarrow}$온난 습윤${\rightarrow}$IV기(期)에 비해 건조${\rightarrow}$V기(期)에 비해 습윤한 환경으로 변천하는 것을 알 수 있었다. 특히 약 5,900~3,200 yrs B.P.의 기간이 상대적으로 가장 온난 습윤했던 것으로 밝혀졌다. 하지만 대자율분석에 의하면 시료채취지점 일대의 환경변화는 크게 4개의 시대로 구분되는데 ii-기(期)에 가장 대자율이 높다. I-기(期)는 배후습지 기원의 퇴적물로 이루어져 있으며, 시간의 경과에 따라 토양화가 진전되었다. 이에 비해 ii-기(期)와 iii-기(期)에서 대자율이 다른 시기에 비해 높은 이유는 구릉사면의 풍화와 토양화 과정에서 강자성 광물이 집적된 토양층이 침식에 의해 제거되고 이들이 운반되어 선상지 퇴적물을 형성했기 때문이다. iv-기(期)는 경작층으로 이용되는 현재에 대비된다.

Multi-proxy analysis was used to produce a high-resolution paleoclimatic record from a thick section of the Holocene alluvial fan deposit in Gatap-ri, Buyeo. According to ${\delta}^{13}C$ analyses, five minor climate fluctuations can be determined. From the stage I to stage VI, climate changes are as follows: cool-dry, warm-humid, cool-dry, warm humid, drier than stage IV, and finally more humid environment than stage V. According to magnetic susceptibility records, four different stages can be identified, among which stage ii shows the highest susceptibility. Stage-i deposit is derived from sediments of back marsh-type wetland. Stage-ii and stage-iii deposits, however, show higher magnetic susceptibility because magnetite-enriched soil from weathered upland was transported to the area to form an alluvial fan deposits. Stage-iv deposit is comparable to the modern plow horizon.

Keywords

References

  1. Baker, R. G., Fredlund, G. G., Mandel, R. D. and Bettis, III E.A., 2000, Holocene environments of the central Great Plains: multiproxy evidence from alluvial sequences, southeastern Nebraska, Quaternary International, 67, 75-88. https://doi.org/10.1016/S1040-6182(00)00010-0
  2. Chang, H., 1995, A Pedogeomorphological Study on the Low Hills around the Alluvial Plains of the Honam and Nonsan Plains, Journal of the Korean Geomorphological Association, 2(2), 73-100(in Korean).
  3. Cerling, T. E., 1984, The stable isotopic composition of modern soil carbonate and its relationship to climate, Earth and Planetary Science Letters, 71, 229-240. https://doi.org/10.1016/0012-821X(84)90089-X
  4. Cerling, T. E., Quade, J., Wang, Y. and Bowman J. R., 1989, Carbon isotopes in soils and palaeosols as ecology and palaeoecology indicators, Nature, 341, 138-139. https://doi.org/10.1038/341138a0
  5. Chang, E. M., 2010, Final ISP Report for Korea Forest Seed and Variety Center(in Korean).
  6. Dearing, J., 1994, Environmental Magnetic Susceptibilityusing the Bartington MS2 system, Chi Publishing, 104pp.
  7. Dearing, J., Dann, R., Hay, K., Lees, J., Loveland, P., Maher, B. and O'Grady, K., 1996, Frequency-dependent susceptibility measurements of environmental materials. Geophysical Journal International, 124, 228-240. https://doi.org/10.1111/j.1365-246X.1996.tb06366.x
  8. Farquhar, G. D. and Richards P. A., 1984, Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes, Australian Journal of Plant Physiology, 11, 539-552. https://doi.org/10.1071/PP9840539
  9. Heller, F. and Liu, T. S., 1986, Paleoclimate and sedimentary history form magnetic susceptibility of loess in China, Geophysical Research Letters, 13, 1169-1172. https://doi.org/10.1029/GL013i011p01169
  10. Hibino, K., 1987, The Study of the Pollen Analysis on Changes of the Forest, the Academic Research Report for Conservation Measures of Virgin Forest, 101-122(in Japanese).
  11. Hwang, S., Kang, C-H, and Yoon S-O., 2011 Sedimentary Characteristics and Chronology of Loess-paleosol Sequence in Jeongjang-ri, Geochang basin, Gyeongnam Province, The Geographical Journal of Korea, 46(1), 1-19(in Korean).
  12. Hughes, E. H. and Sherr, E. B., 1983, Subtidal food webs in a Georgia estuary; $\delta$13C analysis, Journal of Experimental Marine Biology and Ecology, 67, 227-242. https://doi.org/10.1016/0022-0981(83)90041-2
  13. Johnson, W. C. and Willey, K. L., 2000, Isotopic and rock magnetic expression of environmental change at the Pleistocene-Holocene transition in the central Great Plains, Quaternary International, 67(1), 89-106. https://doi.org/10.1016/S1040-6182(00)00011-2
  14. Johnson, W. C., Park, K., Isaacson, J. S. and Johnson, D. L., 1997, Late Pleistocene and Holocene environments on Fort Riley, Kansas, Current Research in the Pleistocene, v. 14, pp. 163-165.
  15. Jung H. K., Park J. H. and Kim C. B., 2010, Carbon Isotope analysis for the climatic environment change in South Korea during the Holocene : a case study in Yeongjong Islands of Yellow Sea, The Korean Earth Science Society, 13(4), 313-321(in Korean).
  16. Kang, S. J. and Yoshioka, T., 2005, Environmental Change of High Moor in Mt. Dae-Am of Korean Peninsula., Korean Journal of Limnology, 38(1), 45-53(in Korean).
  17. Lee J. S., Park Y. H., Rhee J. S., Jeong J. I., Lim M. A. and Chung H. S., 2008, Planting Conditions of Korean Cannabis Derived from Stable Isotope Ratio & Tetrahydrocannabinol Contents, Yakhak Hoeji, 52(3), 172-175(in Korean).
  18. Lew, W., Huang, Y., An, Z., Clemens, S.C., Li, L., Prell, W. L. and Ning Y., 2005, Summer monsoon intensity controls C4/C3 plant abundance during the last 35 ka in the Chinese Loess Plateau: Carbon isotope evidence from bulk organic matter and individual leaf waxes, Palaeogeography, Palaeoclimatology, Palaeoecology, 220(3-4), 243-254. https://doi.org/10.1016/j.palaeo.2005.01.001
  19. Maher, B. A. and Taylor, R. M., 1988, Formation of ultrafine-grained magnetite in soils, Nature, 336(6197), 368-370. https://doi.org/10.1038/336368a0
  20. Maher, B. A. and Thompson, R., 1995, Rainfall reconstruction from pedogenic magnetic susceptibility variations in the Chinese loess and paleosols, Quaternary Research, 44, 383-391. https://doi.org/10.1006/qres.1995.1083
  21. Miao, X., Mason, J. A., Johnson, W.C. and Wang, H., 2007, High-resolution proxy record of Holocene climate form a loess section in Southwestern Nebraska, USA, Palaeogeography, Palaeoclimatology, Palaeoecology, 245, 368-381. https://doi.org/10.1016/j.palaeo.2006.09.004
  22. Park, J., 2008, The applicability of stable isotope analyses on sediments to reconstruct Korean paleoclimate, The Geographical Journal of Korea, 43(4), 477-494(in Korean).
  23. Park, J. H., 2000, Holocene Climatic Change and Geomorphic Processes on Hillslopes in the Central Part of the Oh-u Backbone Range, Northeastern Japan - A chronological approach consisting of pollen analysis and detailed stratigraphy of closed depression deposits -. Dissertation to the Tohoku Univ. 113pp(in Japanese).
  24. Park, J. H. and Yi S., 2008, Postglacial Environments of the Chungnam Province inferred from Pollen Analysis: with Emphasis of Change in Climate and Vegetation together with Human Impact, J. Paleont. Soc. Korea. 24(1), 55-75(in Korean).
  25. Park, J. H. and Park, K., 2010, Mass-Movement of Slope Material Since the Last Glacial Period at Angol Basin within Downstream Area of Guryongcheon in Cheonan, Choongnam Province, Journal of the Korean Geomorphological Association, 17(3), 1-17(in Korean).
  26. Park, J. H., Jang, D. H., and Kim, C., 2011, Mass-Movement of Slope Material During the Holocene Period on the Southern Slope of Geumseong Mountain in Buyeo, Chungnam Province, Journal of the Association of Korea Photo-Geographers, 21(1), 1-14(in Korean).
  27. Park, J., 2008, The application of stable analysis on sediments to reconstruct Korea paleoclimate, The Geographical Journal of Korea, 43(4), 477-494(in Korean).
  28. Park, K., 1997, Reconstruction of Late-Quaternary Climates of the Central Great Plains using magnetic and nonmagnetic parameters, Ph. D. Dissertation, University of Kansas.
  29. Shibuya, E. K., Sarkis, J. E. S., Neto, O. N. and Martinelli, L. A., 2007, Carbon and nitrogen stable isotopes as indicative of geographical origin of marijuana samples seized in the city of Sao Paulo(Brazil), Forensic Science International, 167, 8-15 https://doi.org/10.1016/j.forsciint.2006.06.002
  30. Shibuya, E. K., Sarkis, J. E. S., Neto, O. N., Moreira, M. Z. and Victoria, R. L., 2006, Sourcing Brazilian marijuana by applying IRMS analysis to seized samples, Forensic Science International, 160, 35-43. https://doi.org/10.1016/j.forsciint.2005.08.011
  31. Sukumar, R., Ramesh, T., Pant, R. K. and Rajagopalan, G., 1993, A ${\delta}^{13}C$ record of late Quaternary climate change from tropical peats in southern India, Nature, 364, 703-706. https://doi.org/10.1038/364703a0
  32. Thompson, R. and Morton D. J., 1979, "Magnetic susceptibility and particle-size distribution in recent sediments of the Loch Lomond Drainage Basin, Scotland", Journal of Sedimentary Petrology, 49(3), 8-1-812.
  33. Turney, C. S. M., 1999, Lacustrine bulk organic ${\delta}^{13}C$ in the British Isles during the last glacial Holocene transition (14-9ka C-14 BP), Arctic, Antarctic and Alpine Research, 31, 71-81 https://doi.org/10.2307/1552624
  34. West, J. B., Bowen, G. J. Thure E. Cerling, T. E. and Ehleringer, J. R., 2006, Carbon isotopes in soils and palaeosols as ecology and palaeoecology indicators, Trends in Ecology and Evolution, Vol.21 No.7, 408-414. https://doi.org/10.1016/j.tree.2006.04.002