DOI QR코드

DOI QR Code

Study on a 3-Dimensional Rock Failure Criterion Approximating to Mohr-Coulomb Surface

Mohr-Coulomb 파괴곡면에 근사하는 암석의 3차원 파괴조건식 고찰

  • 이연규 (군산대학교 해양건설공학과)
  • Received : 2011.03.10
  • Accepted : 2011.04.12
  • Published : 2011.04.30

Abstract

In spite of being unable to take into the effect of intermediate principal stress, Mohr-Coulomb and Hoek-Brown criteria are very popular as rock failure criteria. The recent researches reveal that the influence of intermediate principal stress on the failure strength of rock is substantial, so that 3-D failure criteria in which the intermediate principal stress could be considered is necessary for the safe design of the important rock structures. In this study, the likely application of the 3-D failure criterion proposed by Jiang & Pietruszczak (1988) to the prediction of the true triaxial strength of rock materials is discussed. The failure condition is linear in the meridian plane of principal stress space and it is represented by the smooth surface contacting the corners of the Mohr-Coulomb surface. The performance of the Jiang & Pietruszczak's criterion is demonstrated by simulating the actual true triaxial tests on the rock samples of three different rock types.

암석의 파괴조건식으로 Mohr-Coulomb 및 Hoek-Brown 함수가 널리 이용되고 있으나 이들 함수는 중간주 응력을 고려할 수 없다는 단점이 있다. 최근의 연구결과에 의하면 암석의 파괴강도는 중간주응력의 크기에 많은 영향을 받는 것으로 나타났다. 따라서 주요 암반구조물의 안전설계를 위해서는 중간주응력이 고려된 3차원 암석파괴조건식이 도입될 필요성이 있다. 이 연구에서는 주응력좌표계의 자오면에서 선형으로 나타나며 또한 Mohr-Coulomb 파괴곡면의 모서리에 부드럽게 접하는 3차원 파괴함수인 Jiang & Pietruszczak(1988) 함수가 암석의 진삼축압축강도 예측에 활용될 수 있는 가능성에 대하여 논의하였다. Jiang & Pietruszczak 함수를 이용하여 실제 진삼축압축시험 결과를 모사함으로써 이 함수의 성능을 평가하였다.

Keywords

References

  1. Al-Ajmi, A.M and Zimmerman, R.W., 2005, Relation between the Mogi and the Coulomb failure criteria, Int J. Rock Mech. Min. Sci., 42, 431-439. https://doi.org/10.1016/j.ijrmms.2004.11.004
  2. Chang, C. and Haimson, B.C., 2000a, A new true triaxial cell for testing mechanical properties of rock and its use to determine rock strength and deformability of Westerly granite, Int J. Rock Mech. Min. Sci., 37, 285-296. https://doi.org/10.1016/S1365-1609(99)00106-9
  3. Chang, C. and Haimson, B.C., 2000b, True triaxial strength and deformability of the German Continental deep drilling program (KTB) deep hole amphibolite, J. Geophys. Res., 105, 18999-19013. https://doi.org/10.1029/2000JB900184
  4. Colmenares, L.B. and Zoback, M.D., 2002, A statistical evaluation of intact rock failure criteria constrained by polyaxial test data for five different rocks, Int J. Rock Mech. Min. Sci., 39, 695-729. https://doi.org/10.1016/S1365-1609(02)00048-5
  5. Drucker, D. and Prager, W., 1952, Soil mechanics and plastic analysis or limit design. Q. Appl. Math., 10, 157-.65. https://doi.org/10.1090/qam/48291
  6. Drucker, D., 1959, A definition of stable inelastic material, J. Appl. Mech., 26, 101-106.
  7. Ewy, R., 1999, Wellbore-stability predictions by use of a modified Lade criterion. SPE Drill Completion, 14(2), 85-91. https://doi.org/10.2118/56862-PA
  8. Hoek, E. and Brown, E.T., 1980, Underground excavation in rock, Institute of Mining and Metallurgy, London.
  9. Jiang, J. and Pietruszczak, S., 1988, Convexity of yield loci for pressure sensitive materials, Comput. Geotech., 5, 51-63 https://doi.org/10.1016/0266-352X(88)90016-X
  10. Mogi K., 1967, Effect of the intermediate principal stress on rock failure, J. Geophys. Res., 72, 5117-5131. https://doi.org/10.1029/JZ072i020p05117
  11. Mogi, K., 1971, Fracture and flow of rocks under high triaxial compression. J. Geophys. Res., 76, 1255-1269. https://doi.org/10.1029/JB076i005p01255
  12. Mogi, K., 2007, Experimental rock mechanics, Taylor & Francis.
  13. Pietruszczak, S., 2010, Fundamentals of plasticity in geomechanics, CRC Press.
  14. Takahashi, M. and Koide, H., 1989, Effect of the intermediate principal stress on strength and deformation behavior of sedimentary rocks at the depth shallower than 2000m, Rock at great depth (V. Maury & D. Fourmaintraux Ed.), Vol 1, 19-26.
  15. Zhou, S., 1994, A program to model the initial shape and extent of borehole breakout. Comput. Geosci., 20, 1143-1160. https://doi.org/10.1016/0098-3004(94)90068-X