Distributional Change and Climate Condition of Warm-temperate Evergreen Broad-leaved Trees in Korea

한반도 난온대 상록활엽수의 분포변화 및 기후조건

  • Yun, Jong-Hak (Vascular Plant Research Division, National Institute of Biological Resource) ;
  • Kim, Jung-Hyun (Vascular Plant Research Division, National Institute of Biological Resource) ;
  • Oh, Kyoung-Hee (Vascular Plant Research Division, National Institute of Biological Resource) ;
  • Lee, Byoung-Yoon (Vascular Plant Research Division, National Institute of Biological Resource)
  • 윤종학 (국립생물자원관 고등식물연구과) ;
  • 김중현 (국립생물자원관 고등식물연구과) ;
  • 오경희 (국립생물자원관 고등식물연구과) ;
  • 이병윤 (국립생물자원관 고등식물연구과)
  • Received : 2010.11.09
  • Accepted : 2011.02.16
  • Published : 2011.02.28

Abstract

The research was conducted to find optimal habitats of warm-temperate evergreen broad-leaved trees, and to investigate climate factors to determine their distribution using classification tree (CT) analysis. The warm-temperate evergreen broad-leaved trees model (EG-model) constructed by CT analysis showed that Mean minimum temperature of the coldest month (TMC) is a major climate factor in determining distribution of warm-temperate evergreen broad-leaved trees. The areas above the $-5.95^{\circ}C$ of TMC revealed the optimal habitats of the trees. The coldest month mean temperature (CMT) equitable to $-5.95^{\circ}C$ of TMC is $-1.7^{\circ}C$, which is lower than $-1^{\circ}C$ of CMT of warm-temperate evergreen broad-leaved trees. Suitable habitats were defined for warm-temperate evergreen broad-leaved trees in Korea. These habitats were classified into two areas according to the value of TMC. One area with more than$-5.95^{\circ}C$ of TMC was favorable to trees if the summer precipitation (PRS) is above 826.5mm; the other one with less than $-5.95^{\circ}C$ of TMC was favorable if PRS is above 1219mm. These favorable conditions of habitats were similar to those of warm-temperate evergreen broad-leaved trees in Japan. We figured out from these results that distribution of warm-temperate evergreen broad-leaved trees were expanded to inland areas of southern parts of Korean peninsula, and ares with the higher latitude. Finally, the northern limits of warm-temperate evergreen broad-leaved trees might be adjusted accordingly.

본 연구는 기후변화에 따른 한반도 난온대 상록활엽수의 분포변화와 CT분석을 이용하여 난온대 상록활엽수의 분포를 규정하는 기후요인과 분포적지를 밝히는 것을 목적으로 실시하였다. CT분석을 통해 구축된 한반도 난온대 상록활엽수 분포 모델(EG-model)에서 TMC(최한월최저기온)가 분포를 규정하는 주요 요인으로 작용하였으며, TMC(최한월최저기온)의 $-5.95^{\circ}C$이상을 난온대 상록활엽수의 분포적지로 하고 있다. 이러한 TMC값을 CMT(최한월평균기온)으로 환산한 값인 $-1.7^{\circ}C$는 동아시아 지역 상록활엽수림의 내성한계 온도인 최한월평균기온 $-1^{\circ}C$다 약간 낮은 것으로 분석되었다. 한반도의 난온대 상록활엽수는 최한월최저기온(TMC) $-5.95^{\circ}C$이상의 따듯한 지역에서는 하계강수량 (PRS)이 826.5mm이상인 지역에서, 최한월최저기온(TMC) $-5.95^{\circ}C$미만의 추운 지역에서는 하계강수량이 1219mm이상인 기후조건에서 높은 분포확률을 나타내었다. 이러한 분포경향은 일본의 난온대 상록활엽수의 분포경향과 비슷하였다. 또한, 난온대 상록활엽수는 한반도의 기온상승에 따라 고위도 및 남부내륙으로 분포를 확대하고 있으며 난온대 상록활엽수의 북방한계선 변화를 시사하고 있다.

Keywords

References

  1. Austin, M.(2007) Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecological Modelling 200: 1-19. https://doi.org/10.1016/j.ecolmodel.2006.07.005
  2. Bradshaw, R.H. and O. Zackrisson(1990) A two thousand year history of a northern Swedish boreal forest stand. J. Veg. Sci. 1: 519-528. https://doi.org/10.2307/3235786
  3. Breiman, L.J.H. Friedman, R.A. Olshen and C.J. Stone(1984) Classification and regression trees. Chapman & Hall/CRC, Boca Raton, FL, US, 358pp.
  4. Crozier, L.(2004) Warmer winters drive butterfly range expansion by increasing survivorship. Ecology 85: 231-241. https://doi.org/10.1890/02-0607
  5. De'Ath, G., and K.E. Fabricius(2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81(11): 3178-3192. https://doi.org/10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2
  6. Flora of Korea Editorial Committee(2007) The genera of Vascular Plants of Korea. Academy Publishing co., Seoul, 1482pp.
  7. Gonzalez, P.(2001) Desertification and a shift of forest species in the West African Sahel. Climate Res. 17: 217-228. https://doi.org/10.3354/cr017217
  8. Hanley, J. and B. McNeil(1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143: 29-36. https://doi.org/10.1148/radiology.143.1.7063747
  9. Horikawa, M., I. Tsuyama, T. Matsui, Y. Kominami and N. Tanaka(2009) Assessing the potential impacts of climate change on the alpine habitat suitability of Japanese stone Pine (Pinus pumila). Landscape Ecol. 24: 115-128. https://doi.org/10.1007/s10980-008-9289-5
  10. Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. Linden, X. Dai, K. Maskell and C.A. Johnson(2001) Climate Change 2001: The Scientific Basis. Cambridge: Cambridge University Press.
  11. Hur, H.B., G.A. Jacobs and W.J. Teague(1999) Monthly variation of water masses in the Yellow and East China Seas. J. Oceanography 55: 171-184. https://doi.org/10.1023/A:1007885828278
  12. IPCC(2001) Climate change 2001: Impacts, adaptation, and vulnerability. Contribution of working group II to the third assessment report of the Intergovernment panel on climate change. Cambridge, UK: Cambridge University Press.
  13. Kira, T.(1977) A Climatological interpretation of Japanese vegetation zones. In Miyawaki, A. and Tuxen, R. (eds.) Vegetation science and environmental protection. Maruzen, Tokyo, pp. 21-30. (in Japanese)
  14. Korea Meteorological Administration(2001) Climatological stand normals of Korea.
  15. Kullmann L.(2002) Rapid recent range-margins rise of tree and shrub species in the Swedish Scandes. Journal of Ecology 90: 68-77. https://doi.org/10.1046/j.0022-0477.2001.00630.x
  16. Matsui, T., N. Tanaka and T. Yagihashi(2007) Predicting changes in suitable habitats for beech (Fagus crenata Blume) forests under climate warming in Shirakami Mountains world natural heritage area, Northern Japan. J. Jpn. For. Soc. 89: 7-13. https://doi.org/10.4005/jjfs.89.7
  17. Matsui, T., T. Yagihasi, T. Nakaya, H. Taoda, S. Yoshinaga, H. Daimaru and N. Tanaka(2004b) Probability distributions, vulnerability and sensitivity in Fagus crenata forests following predicted climate change in Japan, Journal of Vegetation Science 15: 605-614.
  18. Matusi, T., T. Nakaya, T. Yagihashi, H. Taoda and N. Tanaka(2004a) Comparing the accuracy of predictive distribution models for Fagus crenata forests in Japan. Jpn. J. For. Environment 46(2): 93-102.
  19. Meshinev, T., I. Apostolova and E. S. Koleva(2000) Influence of warming on timberling rising: a case study on Pinus peuce Griseb. in Bulgaria. Phytocoenologia 30: 431-438. https://doi.org/10.1127/phyto/30/2000/431
  20. Moiseev, P.A. and S.G. Shiyatov(2003) Vegetation dynamics at the treeline ecotone in the Ural highlands, Russia, in alpine biodiversity in Europe, Nagy, L., Grabherr, G., and Thompson, D. B. A., eds., Ecol. Stud. 167: 423-435.
  21. Morse, L.E., L.S. Kutner, G.D. Maddox, J.T. Karteesz, L.L. Honey, C.M. Thurman and S.J. Chaplin(1993) The potential effects of climate change on the native vascular flora of North America: a preliminary climate-envelopes analysis. Rep. TR-103330, Electric Power Research Institute, Palo Alto, CA.
  22. Na, J.Y., J.W. Seo and H.J. Lie(1999) Annual and seasonal variation of the sea surface heat fluxex in the East Asian marginal seas. J. Oceanography 55: 257-270. https://doi.org/10.1023/A:1007891608585
  23. Nakao, K., T. Matusi, N. Tanaka and T. Hukusima(2009) Climatic controls of the distribution and abundance of two evergreen Quercus species in Japan. Jpn. J. For. Environment 51(1): 27-37. (in Japanese with English abstract)
  24. National Institute of Environmental Research(2010) Korean Climate Change Assessment Report 2010. (eds. S. Lee, Y. Hong, C.-G. Song, J. A. Yu, and S.-Y. Kim), 186pp. Incheon, Korea.
  25. Ohsawa, M.(1990) An interpretation in latitudinal patterns of limits in south and east Asian mountains. J. Eco. 78: 326-339.
  26. Ohsawa, M.(1991) Structural comparison of tropical mountain rain-forests along latitudinal and altitudinal gradients in south and east-Asia. Vegetatio 97:1-10.
  27. Ohsawa, M.(1993) Latitudinal pattern of mountain vegetation zonation in southern and eastern Asia. Journal of Vegetation Science 4: 13-18. https://doi.org/10.2307/3235728
  28. Parmesan, C. and G. Yohe(2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37-42. https://doi.org/10.1038/nature01286
  29. Pitelka, L.F., R.H. Gardner, J. Ash, S. Berry, H. Gitay, I.R. Noble, A. Saunders, R.H.W. Bradshaw, L. Brubaker, J.S. Clark, M.B. Daviis, S. Sugita, J.M. Dyer, R. Hengeveld, G. Hope, B. Huntley, G.A. King, S. Lavorel, R.N. Mack, G.P. Malanson, M. McGlone, I.C. Prentice and M. Rejmanek(1997) Plant migration and climate change. Am. Sci. 85: 464-473.
  30. R Development Core Team(2006) A language and environment for statistical computing. R. Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL://www.R-project. org.
  31. Swets, K.A.(1988) Measuring the accuracy of diagnostic systems. Science 240: 1285-1293. https://doi.org/10.1126/science.3287615
  32. Tamis, W.L.M., M. Van't Zelfde and R. Van der Meijden(2001) Changes in vascular plant biodiversity in the Netherlands in the 20th century explained by climatic and other environmental characteristics. In: Long-term effects of climate change on biodiversity and ecosystem processes(eds. H. Van Oene, W. N. Ellis, M. M. P. D. Heijmans, D. Mauquoy, W. L. M. Tamis, F. Berendse, B. Van Geel, R. Van der Meijden and S. A. Ulenberg), 23-51. NOP, Bilthoven, The Netherlands.
  33. Tanaka, N., E. Nakazono, I. Tsuyama and T. Matsui(2009) Assessing impact of climate warming on potential habitats of ten conifer species in Japan. Global environmental research 14(2): 153-164.
  34. Thuiller, W.(2003) BIOMOD-optimizing predictions of species distributions and projecting potential shifts under global change. Global Change Biology 9: 1353-1362. https://doi.org/10.1046/j.1365-2486.2003.00666.x
  35. Tsuyama, I., T. Matsui, M. Ogawa, Y. Kominami and N. Tanaka(2008) Habitat prediction and impact assessment of climate change on Sasa kurilensis in eastern Honshu, Japan. Theory and applications of GIS 16(2): 11-25.
  36. Uyeki, H. (1941) On the northern limit of evergreen broad-leaved tree in Korea Acta. Phytotax. Geobot. 10(2): 89-93. (in Japanese)
  37. Woods, K.D. and M.B. Davis(1989) Paleoecology of range limits: Beech in the upper peninsula of Michigan. Ecology 70: 681-696. https://doi.org/10.2307/1940219
  38. Woodward, F.I.(1987) Climate and plant distribution. Cambridge University Press, Cambridge.
  39. Zweig, M.H. and G. Campbell(1993) Receiver-operating characteristic (ROC) Plots: a fundamental evaluation tool in clinical medicine. Climical Chemistry 39: 561-577.