• Title/Summary/Keyword: OPTIMAL HABITAT

Search Result 102, Processing Time 0.044 seconds

Estimation of optimal ecological flowrates for fish habitats in a nature-like fishway of a large river

  • Kim, Jeong-Hui;Yoon, Ju-Duk;Baek, Seung-Ho;Jang, Min-Ho
    • Journal of Ecology and Environment
    • /
    • v.39 no.1
    • /
    • pp.43-49
    • /
    • 2016
  • Fishways are constructed to provide longitudinal connectivity of streams or rivers where their flow has been altered by in-stream structures such as dams or weirs. Nature-like fishways have an additional function of providing fish habitats. In the study, we estimated the role of a nature-like fishway (length: 700 m, slope: 1/100) for fish habitat by using two dominant species in the Sangju Weir, Nakdong River, to calculate the optimal ecological flow rate using Physical HABitat SIMulation (PHABSIM). To identify the dominant species that used the fishway, we conducted trap monitoring from August to November 2012 at the fishway exit. The dominant species were Zacco platypus and Opsariichthys uncirostric amurensis with a relative abundance of 62.1% and 35.9%, respectively. Optimal habitat suitability indices (HSIs) for Z. platypus and O. u. amurensis were calculated as 0.6-0.8 m/s (water velocity) and 0.2-0.4 m (water depth), and 0.5-0.7 m/s (water velocity) and 0.1-0.3 m (water depth), respectively. The optimal ecological flow rates (OEFs) for Z. platypus and O. u. amurensis were 1.6 and 1.7 cubic meter per second (CMS), respectively. The results of the study can be used in a management plan to increase the habitat function of nature-like fishways in the Sangju Weir. This methodology can be utilized as an appropriate tool that can determine the habitat function of all nature-like fishways.

A Correlation Analysis between Physical Disturbance and Fish Habitat Suitability before and after Channel Structure Rehabilitation (하천구조 개선에 따른 어류 서식적합도와 물리적 교란의 상관분석)

  • Choi, Heung Sik;Lee, Woong Hee
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.1
    • /
    • pp.33-41
    • /
    • 2015
  • In this study, an optimal improvement method of stream channel structure is presented for the enhancement of fish habitat suitability by genetic algorithm. The correlation between fish habitat suitability and physical disturbance in stream is analyzed according to the changes of hydraulic characteristics by channel structure rehabilitation. Zacco koreanus which is an indicator fish of the soundness of aquatic ecosystem was selected as a restoration target species by investigating the community characteristics of fish fauna and river environments in Wonju stream. The habitat suitability is investigated by PHABSIM with the habitat suitability index of Zacco koreanus. Hydraulic analysis by HEC-RAS and physical disturbance evaluation in stream are carried out. The optimal channel width modified for the enhancement of fish habitat suitability is provided. The correlation analysis between habitat suitability and physical disturbance with the change of hydraulic characteristics by channel modification showed that the proper channel modification enhanced fish habitat suitability and mitigated physical disturbance in the stream. The improvement of physical disturbance score by the channel structure rehabilitation for the enhancement of fish habitat suitability was confirmed in this study.

Assessment of Physical Habitat and the Fish Community in Korea Stream

  • Hur, Jun Wook;Joo, Jin Chul;Choi, Byungwoong
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.1
    • /
    • pp.59-67
    • /
    • 2022
  • The purpose of this study is to provide essential data necessary to assess ecological flow requirements by understanding habitat conditions for fish species through monitoring an ecological environment in the Korea stream (Dal Stream) and building related database. On-site surveys were conducted for identifying ecological and habitat conditions at the four monitoring sites. Fish sampling was carried out at the selected four sites (St.) during the period ranging from September, 2008 to September, 2009. At the four sampling sites, we measured water surface elevation, depth and velocity at the cross-sections. Optimal Ecological Flowrates (OEFs) were estimated using the Habitat Suitability Index (HSI) established for four fish species Zacco koreanus (St.1), Pungtungia herzi (St.2), Coreoleuciscus splendidus (St.3), and Zacco platypus (St.4) selected as icon species using the Physical HABitat SIMulation system (PHABSIM). Eighteen species (56.3%) including Odontobutis interrupta, Coreoperca herzi and C. splendidus were found endemic out of the 32 species in eight families sampled during this study period. The endangered species was collected Acheilognathus signifier, Pseudopungtungia tenuicorpa and Gobiobotia macrocephala, and this relative abundance was 9.4%. The most frequently found one was Z. platypus (31.3%) followed by C. splendidus (17.6%) and Z. koreanus (15.7%). The estimated IBI values ranged from 27.3 to 34.3 with average being 30.3 out of 50, rendering the site ecologically poor to fair health conditions. For C. splendidus (St.3), the dominant fish species in the stream, the favored habitat conditions were estimated to be 0.3-0.5 m for water depth, 0.4-0.7 m/s for flow velocity and sand-cobbles for substrate size, respectively. An OEFs of 8.5 m3/s was recommended for the representative fish species at the St.3.

Assessment of Riverine Health Condition and Estimation of Optimal Ecological Flowrate Considering Fish Habitat in downstream of Yongdam Dam (용담댐 하류의 하천건강성 평가 및 어류 서식처를 고려한 최적 생태유량 산정)

  • Hur, Jun-Wook;Kim, Jeong-Kon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.6
    • /
    • pp.481-491
    • /
    • 2009
  • In this study, a comprehensive field monitoring was conducted to understand habitat conditions of fish species in the upper Geum river. Based on the monitoring data, riverine health conditions such as composition ratio of fish species, richness and dominance indexes, bio-diversity (dominance index, diversity, evenness and richness), and index of biological integrity were assessed, and optimal ecological flowrates were estimated using the habitat suitability indexes established for three fish species Coreoleuciscus splendidus, Zacco platypus and Pseudopungtungia nigra selected as icon species using the physical habitat simulation system (PHABSIM). The total number of species sampled was 20 species, and two sensitive species of C. splendidus (22.4%) and Z. platypus (22.0%) dominated the fish community. The estimated IBI values ranged from 34 to 42 with average being 38 out of 50, rendering the site ecologically fair to good health conditions. An optimal ecological flowrate of 9.0 cms was recommended for the representative fish species at the site.

Establishing a Korean Goral (Nemorhaedus caudatus raddeanus Heude) Reserve in Soraksan National Park, Korea: Based on Habitat Suitability Model, Habitat Capability Model, and the Concept of Minimum Viable Population (설악산 국립공원의 산양 보호구역 설정기법에 관한 연구: 서식지 적합성 모형, 서식지 수용능력, 최소 존속 개체군 이론을 이용하여)

  • Choi, Tae-Young;Park, Chong-Hwa
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.6 s.107
    • /
    • pp.23-35
    • /
    • 2005
  • Korean goral (Nemorhaedus caudatus raddeanus) is an endangered species in Korea, and the rugged terrain of the Sorksan National Park $(373km^2)$ is a critical habitat for the species. Since the goral population is threatened by habitat fragmentation, it is essential to establish a reserve for the isolated goral population. The objective of this study was to propose a reserve for Korean goral in the national Park We employed habitat suitability model, habitat capability model, and the concept of minimum viable population. The results of the study were as follows. First, the carrying capacity and optimal density of gorals in the national park were projected to be 449 gorals, and 251 gorals, respectively Second, since only one patch was projected to satisfy the criteria of minimum viable population (50 individuals/during 50 years), the long term extinction possibility of gorals in the site would be very high. Finally, the patch that satisfy the minimum viable population of goral was proposed as the core zone of the goral reserve and adjacent patches were included as buffer zones.

Comparison between in situ Survey and Satellite Imagery with Regard to Coastal Habitat Distribution Patterns in Weno, Micronesia (마이크로네시아 웨노섬 연안 서식지 분포의 현장조사와 위성영상 분석법 비교)

  • Kim, Taihun;Choi, Young-Ung;Choi, Jong-Kuk;Kwon, Moon-Sang;Park, Heung-Sik
    • Ocean and Polar Research
    • /
    • v.35 no.4
    • /
    • pp.395-405
    • /
    • 2013
  • The aim of this study is to suggest an optimal survey method for coastal habitat monitoring around Weno Island in Chuuk Atoll, Federated States of Micronesia (FSM). This study was carried out to compare and analyze differences between in situ survey (PHOTS) and high spatial satellite imagery (Worldview-2) with regard to the coastal habitat distribution patterns of Weno Island. The in situ field data showed the following coverage of habitat types: sand 42.4%, seagrass 26.1%, algae 14.9%, rubble 8.9%, hard coral 3.5%, soft coral 2.6%, dead coral 1.5%, others 0.1%. The satellite imagery showed the following coverage of habitat types: sand 26.5%, seagrass 23.3%, sand + seagrass 12.3%, coral 18.1%, rubble 19.0%, rock 0.8% (Accuracy 65.2%). According to the visual interpretation of the habitat map by in situ survey, seagrass, sand, coral and rubble distribution were misaligned compared with the satellite imagery. While, the satellite imagery appear to be a plausible results to identify habitat types, it could not classify habitat types under one pixel in images, which in turn overestimated coral and rubble coverage, underestimated algae and sand. The differences appear to arise primarily because of habitat classification scheme, sampling scale and remote sensing reflectance. The implication of these results is that satellite imagery analysis needs to incorporate in situ survey data to accurately identify habitat. We suggest that satellite imagery must correspond with in situ survey in habitat classification and sampling scale. Subsequently habitat sub-segmentation based on the in situ survey data should be applied to satellite imagery.

Site Selection of Narrow-mouth Frog(Kaloula borealis) Habitat Restoration Using Habitat Suitability Index (서식처 적합성 지수(HSI)를 활용한 맹꽁이 서식처 복원 위치 선정)

  • Shim, Yun-Jin;Cho, Dong-Gil;Hong, Jin-Pyo;Kim, Duck-Ho;Park, Yong-Su;Sung, Hyun-Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.2
    • /
    • pp.33-44
    • /
    • 2015
  • This study was performed to propose the site selection plan for the restoration of the target Narrow-mouth Frog(Kaloula borealis) habitat, and has developed the AHP model to select the optimal site for narrow-mouth frog habitat restoration on the basis of the narrow-mouth frog Habitat Suitability Index (HSI) items (factors and variables). The assessment areas were established by the narrow-mouth frog HSI factors such as space, feed, cover, water(breeding), threatening factors and others, and the sub-assessment items by each assessment area were established based on the narrow-mouth frog HSI variables. The weighting values of the assessment areas and items were calculated by the developed AHP method. The weighting values of the 5 assessment areas were arranged in order as cover(0.283), water(breeding)(0.276), feed(0.230), space(0.147), and threatening factor(0.064). The final weighting values of the 14 assessment items were arranged in order of height as low-rise grassland(0.190), soil quality(0.178), and stones and between the stones(0.105). The scoring criteria according to the assessment items and factors were marked and applied by equal intervals considering the criteria by HSI items of the narrow-mouth frog and finally the scoring criteria diagram has been proposed for the optimal site selection of the narrow-mouth frog habitat restoration.

Microhabitat Analysis of Endangered Species (I), Cobitis choiiwith Rapid Decreases of Population by Environmental Pollution for a Habitat Replacement (환경오염에 의해 급감하는 멸종위기 1급 어종인 미호종개의 대체 서식지 마련을 위한 미소서식지 분석)

  • Kim, Jiyoon;An, Kwangguk
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.4
    • /
    • pp.271-284
    • /
    • 2014
  • The objectives of this research were to analyse the microhabitat of Cobitis choii which is designated as an endangered fish species (I) and national monument species in Korea (No. 454), and provide valuable information of suitable replacement habitat in the future for a conservation of the population with rapid decreases by environmental pollution. Sampling and microhabitat analysis in three streams such as Baekgok, Yugu and Gap Stream, known as one of the least habitats in Korea showed that the mean number of Cobitis choii observed was 2.6. This result indicated that the richness was too low, so the species conservation was very urgent. Optimal physical microhabitat of the population was determined as environmental conditions with > 60% sand with 1 mm particle size, optimal water depth of 20 - 60 cm in the habitats, and the optimal current velocity of < 0.4 m/s. Under the circumstances of the microhabitat, optimal water volume (discharge) was 0 - 2 m3/s in the each sectional analysis and this reach was mainly composed of the stream section with intermittant slow runs and pools. These microhabitats were largely disturbed by physical modifications of habitat and chemical pollutions due to direct influences of nutrient-rich water inputs from the urban area and intensive agricultural pollutants. For these reasons, optimal habitat replacement are required in the future for the conservation of the species.

A Study on Site Selection for Reeve's turtle(Maunemys reevesii) Habitats Using Habitat Suitability Index (서식지 적합성 지수(HSI)를 활용한 남생이 서식지 복원 대상지 선정 방안 연구)

  • Park, Yong-Su;Chang, Min-Ho;Cha, Jin-Yeol;Cho, Dong-Gil;Kim, Seung-Hee;Lee, Sung-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.3
    • /
    • pp.109-118
    • /
    • 2015
  • This study was performed to propose the site selection plan for the restoration of the target Reeve's turtle (Maunemys reevesii) habitat and has developed the AHP model to select the optimal site for Reeve's turtle habitat restoration on the basis of the Reeve's turtle Habitat Suitability Index (HSI) items (factors and variables). The assessment areas were established by the Reeve's turtle HSI factors such as breeding space, feed, cover, water, threatening factors and others and the sub-assessment items by each assessment area were established based on the Reeve's turtle HSI variables. The weighting values of the assessment areas and items were calculated by the developed AHP method. The weighting values of the 5 assessment areas were arranged in order as breeding space(0.293), food(0.273), water(0.217), cover(0.113), and threatening factor(0.104). The final weighting values of the 17 assessment items were arranged in order of height as all kind of food(0.222), water depth(0.096), altitude of spawning ground(0.093). The scoring criteria according to the assessment items and factors were marked and applied by equal intervals considering the criteria by HSI items of the Reeve's turtle and finally the scoring criteria diagram as been proposed for the optimal site selection of the Reeve's turtle habitat restoration.

Development of Ecologically Suitable Habitat Model for the Sustainable Sea Cucumber Aquafarm (지속가능한 해삼 양식장 조성을 위한 생태적합 서식처 모형 개발)

  • Oh, Yoon Wha;Kang, Min-Seon;Wi, Jin Hee;Lee, In Tae
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.1
    • /
    • pp.64-79
    • /
    • 2015
  • We investigated the tidal current, hydrographic data, and benthic environment of major sea cucumber (Holothuroidea, de Blainville, 1834) habitats in Baengnyeongdo, Jindo and Uljin to understand the optimal environmental or ecological habitat for sea cucumbers. The three study areas were characterized by a cold-water mass of temperatures ranging $12{\sim}18^{\circ}C$, with an active circulation between the surface and deep waters. According to an analysis of the tidal current map, a strong flow velocity of $100{\sim}120cm\;s^{-1}$ appeared in Baengnyeongdo and Jindo. The three sea cucumber habitats showed the common characters of a bottom sediment composed of sand-silt, a diverse seaweed colony and benthic organisms, and boulders and rocks which provide a hideout for the organisms. We aimed to draw the optimal habitat condition for sea cucumbers in Korea, and the result showed that the low water temperature, rapid water flow, active vertical mixing between surface and deep waters, bottom composed by sand-silt, large rocks, and diverse seaweed colony and benthic organism were important factors. The optimal habitat for Juvenile sea cucumbers was the intertidal areas characterized by a muddy bottom, reef, and seaweed. The optimal habitat for adult sea cucumbers was characterized by a place where sand and mud are mixed, and the body size of the sea cucumber was proportional to water depth, and the relatively large boulders and rocks compared to the intertidal area.