DOI QR코드

DOI QR Code

DPPH Radical Scavenging Activity of Phenolic Compounds Isolated from the Stem Wood of Acer tegmentosum

산겨릅나무 목질부에서 분리한 페놀성 화합물의 DPPH 라디칼 소거활성

  • Kwon, Dong-Joo (Department of Forest Biomaterials Engineering, Kangwon National University) ;
  • Kim, Jin-Kyu (Institute of Natural Medicine, Hallym University) ;
  • Bae, Young-Soo (Department of Forest Biomaterials Engineering, Kangwon National University)
  • 권동주 (강원대학교 산림바이오소재공학과) ;
  • 김진규 (한림대학교 천연의학연구소) ;
  • 배영수 (강원대학교 산림바이오소재공학과)
  • Received : 2010.12.06
  • Accepted : 2011.01.12
  • Published : 2011.01.25

Abstract

There have been few reports on the constituents and biological activity of stem bark of $Acer$ $tegmentosum$, and no phytochemical and biological studies have been reported for stem wood of $A.$ $tegmentosum$. Two flavan 3-ols (1 and 2), three phenolic acid/alcohols (3~5), and two coumarins (6 and 7) were isolated from the stem wood of $A.$ $tegmentosum$ by repeated column chromatography. The structure of isolated compounds were identified as (+)-catechin (1), (-)-epicatechin (2), $p$-hydroxybenzaldehyde (3), syringic alcohol (4), $p$-tyrosol (5), scopoletin (6), and cleomiscosin A (7) on the basis of spectroscopic evidences such as $^1H$-NMR, $^{13}C$-NMR, 2D-NMR and MS spectrum. $p$-Hydroxybenzaldehyde (3), syringic alcohol (4), scopoletin (6), and cleomiscosin A (7) have not been reported from this plant so far. (+)-Catechin (1) and (-)-epicatechin (2) showed the higher 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity than butylated hydroxyanisole (BHA) used as a positive control.

현재까지 산겨릅나무의 식물화학적인 연구는 수피부에 국한되어 있으며, 목질부의 성분연구는 전혀 보고된 것이 없다. 본 연구는 산겨릅나무 목질부로부터 2개의 flavan 3-ol, 3개의 phenolic acid/alcohol 및 2개의 coumarin 화합물을 컬럼크로마토그래피를 연속적으로 실시하여 분리하였다. 화합물의 구조는 $^1H$-NMR, $^{13}C$-NMR, 2D-NMR 및 MS 스펙트럼을 분석하여, (+)-catechin (1), (-)-epicatechin (2), $p$-hydroxybenzaldehyde (3), syringic alcohol (4), $p$-tyrosol (5), scopoletin (6) 및 cleomiscosin A (7)으로 동정하였으며, 그 중 $p$-hydroxybenzaldehyde (3), syringic alcohol (4), scopoletin (6) 및 cleomiscosin A (7)는 산겨릅나무에서는 처음 분리하였다. 화합물의 DPPH 라디칼 소거활성 측정 결과 (+)-catechin (1)과 (-)-epicatechin (2)은 양성 대조구로 사용한 BHA보다 우수한 항산화 활성을 나타냈다.

Keywords

References

  1. 김태욱. 1996. 한국의 수목. 교학사. pp. 476.
  2. 조재명 외 12명. 2003. 원색 약용․식용 수목도설. 유성사. pp. 163.
  3. Shin, I. C., J. H. Sa, T. H. Shim, and J. H. Lee. 2006. The physical and chemical properties and cytotoxic effects of Acer tegmentosum Maxim. Extracts. J. Korean Soc. Appl. Biol. Chem. 49(4): 322-327.
  4. Park, K. M., M. C. Yang, K. H. Lee, S. U. Choi, and K. R. Lee. 2006. Cytotoxic phenolic constituents of Acer tegmentosum Maxim. Arch. Pharm. Res. 29(12): 1086-1090. https://doi.org/10.1007/BF02969296
  5. Hur, J. M., E. J. Yang, S. H. Choi, and K. S. Song. 2006. Isolation of phenolic glucosides from the stems of Acer tegmentosum Max. J. Korean Soc. Appl. Biol. Chem. 49(2): 149-152.
  6. Hur, J. M., M. Jun, E. J. Yang, S. H. Choi, J. C. Park, and K. S. Song. 2007. Isolation of isoprenoidal compounds from the stem of Acer tegmentosum Max. Kor. J. Pharmacogn. 38(1): 67-70.
  7. Kwon, D. J. and Y. S. Bae. 2007. Phenolic Compounds from Acer tegmentosum Bark. J. Korean Wood Sci. and Tech. 35(6): 145-151.
  8. Tung, N. H., Y. Ding, S. K. Kim, K. H. Bae, and Y. H. Kim. 2008. Total Peroxyl Radical-Scavenging Capacity of the Chemical Components from the Stems of Acer tegmentosum Maxim. J. Agric. Food Chem. 56(22): 10510-10514. https://doi.org/10.1021/jf8020283
  9. Agrawal, P. K. 1989. Carbon-13 NMR of flavonoids. Elsevier. pp. 437-445.
  10. Harbone, J. B. and T. J. Mabry. 1982. The flavonoids: advance in research, Chapman and Hall Ltd. pp. 421-426.
  11. Pyo, M. K., Y. K. Koo, and H. S. Yun-Choi. 2002. Anti-platelet effect of the phenolic constituents isolated from the leaves of Magnolia obovata. Nat. Prod. Sci. 8(4): 147-151.
  12. Gutierrez, A. B. and W. Herz. 1988. Bisabolones and other constituents of Mikania shushunensis. Phytochemistry 27(12): 3871-3874. https://doi.org/10.1016/0031-9422(88)83034-6
  13. Takaya, Y., T. Furukawa, S. Miura, T. Akutagawa, Y. Hotta, N. Ishikawa, and M. Niwa. 2007. Antioxidant constituents in distillation residue of Awamori spirits. J. Agric. Food Chem. 55(1): 75-79. https://doi.org/10.1021/jf062029d
  14. Saleem, M., J. K. Hyoung, C. Jin, and S. L. Yong. 2004. Antioxidant caffeic acid derivatives from leaves of Parthenocissus tricuspidata. Arch. Pharm. Res. 27(3): 300-304. https://doi.org/10.1007/BF02980064
  15. Ray, A. B., S. K. Chattopadhyay, C. Konno, Y. Kiso, and H. Hikino. 1985. Structures of cleomiscosins, coumarinolignoids of Cleome viscosa seeds. Tetrahedron 41(1): 209-214. https://doi.org/10.1016/S0040-4020(01)83488-8
  16. Kumar, S., A. B. Ray, C. Konno, Y. Oshima, and H. Hikino. 1988. Cleomiscosin D, a coumarino-lignan from seeds of Cleome viscosa. Phytochemistry 27(2): 636-638. https://doi.org/10.1016/0031-9422(88)83163-7

Cited by

  1. Flavonoid Constituents of Acacia catechu vol.58, pp.2, 2015, https://doi.org/10.3839/jabc.2015.030
  2. Phenolic Acid Composition and Antioxidative Activity of Red Ginseng Prepared by High Temperature and High Pressure Process vol.25, pp.4, 2012, https://doi.org/10.9799/ksfan.2012.25.4.827
  3. Antioxidant Activity of Sansa (Crataegi fructus) and Its Application to the Pork Tteokgalbi vol.33, pp.4, 2013, https://doi.org/10.5851/kosfa.2013.33.4.531