DOI QR코드

DOI QR Code

수지함침보드의 2차 탄화에 의한 고밀도 우드세라믹 제조 - 밀도경사 변화 -

Manufacturing of High Density Woodceramics by Recarbonization Using a Resin Impregnation Board - Change of Density Profile -

  • 오승원 (전북대학교 농업생명과학대학 농업과학기술연구소) ;
  • 전순식 (전북대학교 농업생명과학대학 농업과학기술연구소) ;
  • 변희섭 (경상대학교 농업생명과학대학 농업생명과학연구원)
  • Oh, Seung-Won (College of Agriculture and Life Science, Institute of Agriculture Science & Technology, Chonbuk National University) ;
  • Jeon, Soon-Sick (College of Agriculture and Life Science, Institute of Agriculture Science & Technology, Chonbuk National University) ;
  • Byeon, Hee-Seop (College of Agriculture and Life Science, IALS, Gyeongsang National University)
  • 투고 : 2010.12.06
  • 심사 : 2011.01.10
  • 발행 : 2011.01.25

초록

본 연구에서는 고밀도 우드세라믹을 제조하기 위한 기초 연구로서 수지함침율 및 탄화온도에 따라 제조된 1차 탄화 우드세라믹을 수지 재 함침 후 2차 탄화하여 우드세라믹을 제조하고 밀도경사를 조사하였다. 2차 탄화 후 최소, 평균 및 최고밀도가 1차 탄화 우드세라믹보다 증가하였고, 밀도경사 비율도 증가하였다. 따라서 고밀도와 밀도경사 비율이 작은 균질한 우드세라믹을 제조하기 위해서는 2차 함침과 2차 탄화에 의한 우드세라믹 제조방법도 효과가 있는 것으로 나타났다.

A repeated impregnation and carbonization process was introduced to product high-density woodceramics using a resin impregnation board. The density profile were measured to further confirm morphologically and structurally occurred changes of one-time and two-time phenolic resin-treated and carbonized woodceramics. After the two-time carbonization of the products, the minimum, average and maximum densities increased more than those of the one-time carbonized woodceramics, and the increase of density profile. Therefore, it is considered that the preparation of uniformed woodceramics with high-density and low density dissipation can be produced by a repeated impregnation and carbonization).

키워드

참고문헌

  1. Hirose, T., T. X. Fan, T. Okabe, and M. Yoshimura. 2001. Effect of carbonizing temperature on the basic properties of woodceramics impregnated with liquefied wood. Journal of Materials Science 36: 4145-4149. https://doi.org/10.1023/A:1017952502431
  2. Hirose, T., T. X. Fan, T. Okabe, and M. Yoshimura. 2002. Effect of carbonizing speed on the property change of woodceramics impregnated with liquefacient wood. Materials Letters 52: 229-233. https://doi.org/10.1016/S0167-577X(01)00399-8
  3. Hokkirigawa, K., T. Okabe, and K. Saito. 1995. Development of porous carbon materials "woodceramics" - Fundamental wear properties under unlubricated condition on air, under base-oil impregnated condition in water -. Journal of the Society of Materials Science Japan 44(501): 800-804. https://doi.org/10.2472/jsms.44.800
  4. Hokkirigawa, K., T. Okabe, and K. Saito. 1996. Wear properties of new porous carbon materials: woodceramics. Journal of Porous Materials 2: 229-235. https://doi.org/10.1007/BF00488113
  5. Hokkirigawa, K., T. Okabe, and K. Saito. 1996a. Friction properties of new porous carbon materials: woodceramics. Journal of Porous Materials 2: 237-243. https://doi.org/10.1007/BF00488114
  6. Oh, S. W., T. Hirose, and T. Okabe. 2000. Manufacturing characteristics of woodceramics from thinned small logs (I) - Resin impregnation rate and bending strength -. Journal of the Korean Wood Science and Technology 28(4): 51-55.
  7. Oh, S. W. and T. Okabe. 2003. Manufacture of woodceramics chip tile from waste wood. Forest Products Journal 53(7/8): 50-53.
  8. Oh, S. W., T. Okabe, and T. Hirose. 2000. Electrical properties of woodceramics made from thinned logs of Cryptomeria japonica D. Don. Journal of the Korean Society of Furniture Technology 11(1): 31-36.
  9. Okabe, T., K. Saito, and K. Hokkirigawa. 1996. The effect of burning temperature on the structural changes of woodceramics. Journal of Porous Materials 2: 215-221. https://doi.org/10.1007/BF00488111
  10. Okabe, T., K. Saito, and K. Hokkirigawa. 1996a. New porous carbon materials woodceramics : Development and fundamental properties. Journal of Porous Materials 2: 207-213. https://doi.org/10.1007/BF00488110
  11. Xian, Q. X., T. X. Fan, Z. Di, T. Sakata, and H. Mori. 2002. Mechanical Properties and damping behavior of woodcermics/Zk 60 A Mg alloy composite. Materials Research Bulletin 37: 1133-1140. https://doi.org/10.1016/S0025-5408(02)00728-6
  12. Xian, X. Q., D. Zang, T. K. Fan, T. Sakata, H. Mori, T. Okabe, and T. Hirose. 2002. The fabrication of composites with interpenetrating networks based on woodceramics. Materials Letters 56: 102-107. https://doi.org/10.1016/S0167-577X(02)00426-3
  13. Xie, X. Q., T. X. Fan, B. H. Sun, D. T. Zang, T. Sakata, H. Mori, and T. Okabe. 2002. Dry sliding friction and wear behavior of woodceramics/Al-Si composites. Material Science and Engineering. 1-7.
  14. Zhao, B. Y., T. Hirose, T. Okabe, D. Zhang, T. X. Fan, and K. A. Hu. 2002. woodceramics prepared from wood powder/phenolated wood composite. Journal of Porous Materials 9: 195-201. https://doi.org/10.1023/A:1020986801521
  15. 岡部敏弘. 1996. 木質系多孔質炭素材料 ウツドセラミツクス. 內田老鶴圃. 42-82
  16. 素材料學會編. 1996. 新․炭素材料入門. リアライス社. 10-80.