Abstract
This paper presents a new test technique for evaluating performance of vehicle detectors with interval estimation, not the conventional point estimation, for presenting statistical confidence interval. The methodology is categorized into three parts; sampling plan, analysis on the characteristic of evaluation indices, and the expression of evaluation results. Even though many statistical sampling plans exist, stratified random sampling is regarded as the most appropriate one, considering the detector performance characteristics that varies with traffic, illumination, and meteorological conditions. No magic bullet exists for evaluation index for detector evaluation, hence the characteristics of evaluation indices were thoroughly analyzed and a reasonable process for choosing the best evaluation index is proposed. Finally, the methodology to express the result of detector evaluation for the entire evaluation period and individual analysis interval is represented, respectively. To overcome the existing drawbacks in point estimation, interval estimation by which statistical confidence interval can be represented is introduced for enhancing statistical reliability of traffic detector evaluation. This research can make vehicle detector scheme improve one step forward.
본 논문은 기존의 단일값(점추정)으로 제시하던 검지기 성능평가 결과를 통계적 신뢰구간(구간추정)으로 제시하기 위한 검지기 성능평가 방안을 제시했다. 일반적으로 구간추정은 점추정에 비해 표본 통계의 더 많은 정보를 제공하기 때문에 기존 단일값으로 제시해 오던 검지기 성능평가 결과의 신뢰성을 향상시킬 수 있다. 방법론은 크게 표본 추출, 평가척도 분석, 평가결과 제시의 세 부분으로 나누어진다. 표본추출 방법에는 다양한 통계적 표본 추출 방법이 있지만 교통, 조도, 기상조건에 따라 변화하는 차량검지기 성능의 특성상 층화추출법이 통계적 신뢰구간 제시를 위한 가장 적합한 방법론으로 간주되었다. 또한 기존에 널리 사용된 검지기 성능평가 척도들의 특징을 면밀히 분석하여 평가자로 하여금 해당 검지자료에 적합한 평가척도를 선택할 수 있는 프로세스를 정립하였다. 마지막으로 평가기간 전체(예. 30분)와 개별분석 단위(예. 1분) 평가결과의 통계적 신뢰구간을 반영하기 위한 방법론을 제시했다. 본 연구는 기존 검지기 성능평가 결과의 단일값 제시로 인해 불가능 했던 신뢰구간 제시를 가능하게 함에 따라 검지기 성능평가 결과의 신뢰성을 향상시킬 수 있을 것으로 판단된다.