DOI QR코드

DOI QR Code

새로운 속도함수를 갖는 레벨 셋 방법을 이용한 의료영상분할

Image Segmentation Using Level Set Method with New Speed Function

  • Kim, Sun-Worl (Department of Statistics, Chonnam National University) ;
  • Cho, Wan-Hyun (Department of Statistics, Chonnam National University)
  • 투고 : 20100400
  • 심사 : 20110300
  • 발행 : 2011.04.30

초록

본 논문에서는 레벨 셋 방법을 이용하여 영상분할을 수행하는데 필요한 새로운 하이브리드 속도함수를 제안한다. 새롭게 제안하는 속도함수는 정확한 분할 결과를 위하여 영상의 객체가 가지고 있는 영역정보와 윤곽선정보를 함께 이용한다. 영역정보는 관심이 있는 물체영상내의 픽셀들의 밝기에 대한 확률분포의 정보를 이용하였고, 윤곽선정보는 영상의 에지의 기울기로부터 주어지는 기울기 벡터장을 이용하였다. 제안된 방법을 이용한 분할결과의 정확성을 확인하기 위하여 가상영상과 실제 사용되는 의료영상에 대하여 다양한 실험을 실시하고, 분할된 결과를 통하여 제안된 방법의 우수성을 입증하였다.

In this paper, we propose a new hybrid speed function for image segmentation using level set. A new proposed speed function uses the region and boundary information of image object for the exact result of segmentation. The region information is defined by the probability information of pixel intensity in a ROI(region-of-interest), and the boundary information is defined by the gradient vector flow obtained from the gradient of image. We show the results of experiment for an various artificial image and real medical image to verify the accuracy of segmentation using proposed method.

키워드

참고문헌

  1. Chan, T. F. and Vese, L. A. (2001). Active contours without edges, IEEE Transactions on Image Processing, 10, 266-277. https://doi.org/10.1109/83.902291
  2. Chuang, C. H. and Lie, W. N. (2004). A downstream algorithm based on extended gradient vector flow field for object segmentation, IEEE Transactions On Image Processing, 12, 1379-1392.
  3. Jayadevappa, D., Srinivas, K. S. and Murty, D. S. (2009). A new deformable model based on level sets for medical image segmentation, IAENG International Journal of Computer Science, 36.
  4. Loog, M. and Ginneken, B. V. (2006). Segmentation of the posterior ribs in chest radiographs using iterated contextual pixel classification, IEEE Transactions on Medical Imaging, 25, 602-611. https://doi.org/10.1109/TMI.2006.872747
  5. Osher, S. and Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79, 12-49. https://doi.org/10.1016/0021-9991(88)90002-2
  6. Rousson, M. and Deriche, R. (2002). Variational framework for active and adaptive segmentation of vector valued images, Proceeding of IEEE Workshop on Motion and Video Computing.
  7. Sethian, J. A. (1999). Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, 2nd Edition, Cambridge University Press.
  8. Xu, C. and Prince, J. (1995). Snake, shapes, and gradient vector flow, IEEE Transactions On Image Processing, 7, 359-369.
  9. Xu, C. and Prince, J. (1997). Gradient vector ow: A new external force for snake, Proceeding of IEEE Computer Society Conference On Computer Vision And Pattern Recognition.