DOI QR코드

DOI QR Code

Fiber reinforced concrete properties - a multiscale approach

  • Gal, Erez (Department of Structural Engineering, Ben-Gurion University) ;
  • Kryvoruk, Roman (Department of Structural Engineering, Ben-Gurion University)
  • Received : 2009.10.06
  • Accepted : 2010.10.20
  • Published : 2011.10.25

Abstract

This paper describes the development of a fiber reinforced concrete (FRC) unit cell for analyzing concrete structures by executing a multiscale analysis procedure using the theory of homogenization. This was achieved through solving a periodic unit cell problem of the material in order to evaluate its macroscopic properties. Our research describes the creation of an FRC unit cell through the use of concrete paste generic information e.g. the percentage of aggregates, their distribution, and the percentage of fibers in the concrete. The algorithm presented manipulates the percentage and distribution of these aggregates along with fiber weight to create a finite element unit cell model of the FRC which can be used in a multiscale analysis of concrete structures.

Keywords

References

  1. Aboudi, J. (1991), Mechanics of composite materials - a unified micromechanical approach, Elsevier, Amsterdam.
  2. Aboudi, J. (2003), "Micromechanical analysis of the finite elastic-viscoplastic response of multiphase composites", Int. J. Solids Struct., 40, 2793-2817. https://doi.org/10.1016/S0020-7683(03)00083-0
  3. Aboudi, J., Pindera, M.J. and Arnold, S.M. (2003), "Higher-order theory for periodic multiphase materials with inelastic phases", Int. J. Plasticity, 19(6), 805-847. https://doi.org/10.1016/S0749-6419(02)00007-4
  4. Ahmad, H.A. and Lagoudas, C.L. (1991), "Effective elastic properties of fiber-reinforced concrete with random fibers", J. Eng. Mech., 117(12), 2931-2938. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:12(2931)
  5. Asferg, J.L., Poulsen, P.N. and Nielsen, L.O. (2007), "A consistent partly cracked XFEM element for cohesive crack growth", Int. J. Numer. Meth. Eng., 72, 464-485. https://doi.org/10.1002/nme.2023
  6. Ashour, S.A., Wafa, F.F. and Kamal, M.I. (2000), "Effect of concrete compressive strength and tensile reinforcement ratio on the flexural behavior of fibruous concrete beams", Eng. Struct., 22(9), 1145-1158. https://doi.org/10.1016/S0141-0296(99)00052-8
  7. Benssousan, A., Lions, J.L. and Papanicoulau, G. (1978), Asymptotic analysis for periodic structures, North-Holland, Amsterdam.
  8. Bentz, D.P., Garboczi, E.J. and Lagergren, E.S. (1998), "Multi-scale microstructural modelling of concrete diffusivity: identification of significant variables", Cement Concrete Aggr., 20(1), 129-139. https://doi.org/10.1520/CCA10446J
  9. Bullard, J.W. and Garboczi, E.J. (2006), "A model investigation of the influence of particle shape on portland cement hydration", Cement Concrete Res., 36(6),1007-1015. https://doi.org/10.1016/j.cemconres.2006.01.003
  10. Christensen, R.M. and Lo, K.H. (1979), "Solution for effective shear properties in three phase sphere and cylinder models", J. Mech. Phys. Solids, 27, 315-330. https://doi.org/10.1016/0022-5096(79)90032-2
  11. Constantinides, G. and Ulm, F.J. (2004), "The effect of two types of C-S-H on the elasticity of cement-based materials: results from nanoindentation and micromechanical modeling", Cement Concrete Res., 34(1), 67-80. https://doi.org/10.1016/S0008-8846(03)00230-8
  12. Cusatis, G. and Cedolin, L. (2007), "Two-scale study of concrete fracturing behavior", Eng. Fracture Mech., 74, 3-17. https://doi.org/10.1016/j.engfracmech.2006.01.021
  13. de Borst, R., Pamin, J. and Geers, M.G.D. (1999), "On coupled gradient-dependent plasticity and damage theories with a view to localization analysis", Eur. J. Mech. A - Solids, 18(6), 939-962. https://doi.org/10.1016/S0997-7538(99)00114-X
  14. de Borst, R. (2002), "Some recent issues in computational failure mechanics", Int. J. Numer. Meth. Eng., 52, 63-95.
  15. DeJong, M.J. and Ulm, F.J. (2007), "The nanogranular behavior of C-S-H at elevated temperatures (up to 700$^{\circ}C$)", Cement Concrete Res., 37, 1-12. https://doi.org/10.1016/j.cemconres.2006.09.006
  16. Drucker, D.C. and Prager, W. (1952), "Soil mechanics and plastic analysis or limit design", Q. Appl. Math., 10, 157-165. https://doi.org/10.1090/qam/48291
  17. Eshelby, J.D. (1957), "The determination of the field of an ellipsoidal inclusion and related problems", Proc. R. Soc. Lond. A., 241, 376-396. https://doi.org/10.1098/rspa.1957.0133
  18. Ezeldin, A.S. and Balagaru, P.N. (1992), "Normal and high strength fiber reinforced concrete under compression", J. Mater. Civil Eng., 4(4), 415-429. https://doi.org/10.1061/(ASCE)0899-1561(1992)4:4(415)
  19. Feyel, F. (2003), "A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua", Comput. Method. Appl. M., 192, 3233-3244. https://doi.org/10.1016/S0045-7825(03)00348-7
  20. Feyel, F. and Chaboche, J.L. (2000), "FE2 Multiscale approach for modeling the elastoviscoplastic behavior of long fiber Sic/Ti composite materials", Comput. Method. Appl. M., 183, 309-330. https://doi.org/10.1016/S0045-7825(99)00224-8
  21. Fish, J. and Shek, K.L. (1999), "Finite deformation plasticity of composite structures: computational models and adaptive strategies", Comput. Method. Appl. M., 172, 145-174. https://doi.org/10.1016/S0045-7825(98)00228-X
  22. Fish, J., Shek, K., Pandheeradi, M. and Shephard, M.S. (1997), "Computational plasticity for composite structures based on mathematical homogenization: theory and practice", Comput. Method. Appl. M., 148, 53-73. https://doi.org/10.1016/S0045-7825(97)00030-3
  23. Fish, J. and Yu, Q. (2001), "Multiscale damage modeling for composite materials: theory and computational framework", Int. J. Numer. Meth. Eng., 52, 161-192. https://doi.org/10.1002/nme.276
  24. Fussl, J., Lackner, R., Eberhardsteiner, J. and Mang, H.A. (2008), "Failure modes and effective strength of twophase materials determined by means of numerical limit analysis", Acta Mech., 195, 185-202. https://doi.org/10.1007/s00707-007-0550-9
  25. Gal, E., Ganz, A., Chadad, L. and Krivoruk, R. (2008), "Development of a concrete unit cell", Int. J. Multiscale Comp. Eng., 6(5), 499-510. https://doi.org/10.1615/IntJMultCompEng.v6.i5.80
  26. Garboczi, E.J. and Berryman, J.G. (2000), "New effective medium theory for the diffusivity or conductivity of a multi-scale concrete microstructure model", Concrete Sci. Eng., 2(6), 88-96.
  27. Garboczi, E.J. and Berryman, J.G. (2001), "Elastic moduli of a material containing composite inclusions: effective medium theory and finite element computations", Mech. Mater., 33, 455-470. https://doi.org/10.1016/S0167-6636(01)00067-9
  28. Garboczi, E.J. and Bullard, J.W. (2000), "Shape analysis of a reference cement", Cement Concrete Res., 34(10), 1933-1937.
  29. Garboczi, E.J., Bullard, J.W. and Bentz, D.P. (2004), "Status of virtual testing of cement and concrete in the US - 2004", Concrete Int., 26(12), 33-37.
  30. Garboczi, E.J., Douglas, J.F. and Bohn, R.B. (2006), "A hybrid finite elementanalytical method for determining the intrinsic elastic moduli of particles having moderately extended shapes and a wide range of elastic properties", Mech. Mater., 38(8-10), 786-800. https://doi.org/10.1016/j.mechmat.2005.06.012
  31. Garboczi, E.J. and Day, A.R. (1995), "An algorithm for computing the effective linear elastic properties of heterogeneous materials: three-dimensional results for composites with equal phase Poisson ratios", J. Mech. Phys. Solids., 43(9), 1349-1362. https://doi.org/10.1016/0022-5096(95)00050-S
  32. Geers, M.G.D., Kouznetsova, V. and Brekelmans, W.A.M. (2001), "Gradient-enhanced computational homogenization for the micro-macro scale transition", J. Phys. IV, 11, 145-152.
  33. Ghosh, S., Lee, K. and Moorthy, S. (1995), "Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method", Int. J. Solids Struct., 32, 27-62. https://doi.org/10.1016/0020-7683(94)00097-G
  34. Ghosh, S., Lee, K. and Moorthy, S. (1996), "Two scale analysis of heterogeneous elasticplastic materials with asymptotic homogenization and voronoi cell finite element model", Comput. Method. Appl. M., 132, 63-116. https://doi.org/10.1016/0045-7825(95)00974-4
  35. Ghosh, S., Lee, K. and Raghavan, P. (2001), "A multi-level computational model for multi-scale damage analysis in composite and porous materials", Int. J. Solids. Struct., 38, 2335-2385. https://doi.org/10.1016/S0020-7683(00)00167-0
  36. Gitman, I.M., Askes, H. and Sluys, L.J. (2007), "Representative volume: existence and size determination engineering", Fracture Mech., 74, 2518-2534. https://doi.org/10.1016/j.engfracmech.2006.12.021
  37. Gitman, I.M., Gitman, M.B. and Askes, H. (2006), "Quantification of stochastically stable representative volumes for random heterogeneous materials", Arch. Appl. Mech., 75, 79-92. https://doi.org/10.1007/s00419-005-0411-8
  38. Gitman, I.M., Askes, H. and Sluys, L.J. (2008), "Coupled-volume multi-scale modeling of quasi-brittle material", Eur. J. Mech. A - Solids, 27, 302-327. https://doi.org/10.1016/j.euromechsol.2007.10.004
  39. Guedes, J.M. and Kikuchi, N. (1990), "Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods", Comput. Method. Appl. M., 83, 143-198. https://doi.org/10.1016/0045-7825(90)90148-F
  40. Gutierrez, M.A. (2004), "Energy release control for numerical simulations of failure in quasi-brittle solids", Commun. Numer. Meth. Eng., 20, 19-29.
  41. Haecker, C.J., Garboczi, E.J., Bohn, R.B., Sun, Z., Voigt, T. and Shah, S.P (2005), "Modeling the linear elastic properties of cement paste", Cement Concrete Res., 35(10), 1948-1960. https://doi.org/10.1016/j.cemconres.2005.05.001
  42. Haffner, S., Eckardt, S., Luther, T. and Koknke, C. (2006), "Mesoscale modeling of concrete: geometry and numerics", Comp. Struct., 84, 450-461. https://doi.org/10.1016/j.compstruc.2005.10.003
  43. Halpin, J.C. and Kardos, J.L. (1976), "Halpin-Tsai equations: a review", Polym. Eng. Sci., 1976, 16(5), 344-352. https://doi.org/10.1002/pen.760160512
  44. Hashin, Z. (1962), "The elastic moduli of heterogeneous materials", J. Appl. Mech., 29, 143-150. https://doi.org/10.1115/1.3636446
  45. He, H., Guo, Z., Stroeven, P., Stroeven, M. and Sluys, L.H. (2009), "Influence of particle packing on elastic properties of concrete", Proceeding of The First International Conference on Computational Technologies in Concrete Structures (CTCS'09), Jeju, Korea, May, 1177-1198.
  46. Hill, R. (1965), "A self-consistent mechanics of composite materials", J. Mech. Phys. Solids, 13, 357-372.
  47. Hung, L.T., Dormieux, L., Jeannin, L., Burlion, N. and Barthelemy, J.F. (2008), "Nonlinear behavior of matrixinclusion composites under high confining pressure: application to concrete and mortar", C.R. Mecanique, 336, 670-676. https://doi.org/10.1016/j.crme.2008.05.009
  48. Ibrahimbegovic, A. and Markovic, D. (2003), "Strong coupling methods in multiphase and multiscale modeling of inelastic behavior of heterogeneous structures", Comput. Method. Appl. M., 192, 3089-3107. https://doi.org/10.1016/S0045-7825(03)00342-6
  49. Jirasek, M. (2000), "Comparative study on finite elements with embedded discontinuities", Comput. Method. Appl. M., 188, 307-330. https://doi.org/10.1016/S0045-7825(99)00154-1
  50. Johnston, C.D. (1974), "A review of mechanical properties, fiber reinforced concrete", Steel Fiber Reinforced Concrete, ACI Publication, SP-44, 127-142.
  51. Kouznetsova, V., Geers, M.G.D. and Brekelmans, W.A.M. (2002), "Multi-scale constitutive modeling of heterogeneous materials with a gradient tenhanced computational homogenization scheme", Int. J. Numer. Meth. Eng., 54, 1235-1260. https://doi.org/10.1002/nme.541
  52. Kouznetsova, V., Brekelmans, W.A. and Baaijens, F.P.T. (2001), "An approach to micro-macro modeling of heterogeneous materials", Comp. Mech., 27, 37-48. https://doi.org/10.1007/s004660000212
  53. Lee, J., Xi, Y., Willam, K. and Jung, Y. (2009), "A multiscale model for modulus of elasticity of concrete at high temperatures", Cement Concrete Res., 39, 754-762. https://doi.org/10.1016/j.cemconres.2009.05.008
  54. Mang, H.A., Aigner, E., Eberhardsteiner, J., Hackspiel, C., Hellmich, C., Hofstetter, K., Lackner, R., Pichler, B., Scheiner, S. and Stürzenbecher, R. (2009), "Computational multiscale analysis in civil engineering", Int. Multiscale Mech., 2(2), 109-128. https://doi.org/10.12989/imm.2009.2.2.109
  55. Mang, H.A., Lackner, R., Meschke, G. and Mosler, J. (2003), "Computational modeling of concrete structures", Karihaloo BL, Ritchie RO, Milne I, de Borst R, Mang HA, (editors), Comprehensive structural integrity, Numerical and computational methods, 3. Oxford: Elsevier Science, 541-606.
  56. Mansur, M.A., Chin, M.S. and Wee, T.H. (1999), "Stress-strain relationship of high strength fiber concrete in compression", J. Mater. Civil Eng., 11(1), 21-29. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:1(21)
  57. Markovic, D. and Ibrahimbegovic, A. (2004), "On micro-macro interface conditions for micro scale based FEM for inelastic behavior of heterogeneous materials", Comput. Method. Appl. M., 193, 5503-5523. https://doi.org/10.1016/j.cma.2003.12.072
  58. Matsui, K., Terada, K. and Yuge, K. (2004), "Two-scale finite element analysis of heterogeneous solids with periodic microstructures", Comp. Struct., 82, 593-606. https://doi.org/10.1016/j.compstruc.2004.01.004
  59. Meschke, G. and Dumstorff, P. (2007), "Energy-based modeling of cohesive and cohesionless cracks via XFEM", Comput. Method. Appl. M., 196, 2338-2357. https://doi.org/10.1016/j.cma.2006.11.016
  60. Moes, N. and Belytschko, T. (2002), "Extended finite element method for cohesive crack growth", Eng. Fracture Mech., 69, 813-833. https://doi.org/10.1016/S0013-7944(01)00128-X
  61. Miehe, C. and Koch, A. (2002), "Computational micro-to-macro transition of discretized microstructures undergoing small strain", Arch. Appl. Mech., 72, 300-317. https://doi.org/10.1007/s00419-002-0212-2
  62. Mori, T. and Tanaka, K. (1973), "Average stress in the matrix and average elastic energy of materials with misfitting inclusions", Acta Metall., 21, 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
  63. Nadeau, J.C. (2003), "A multiscale model for effective moduli of concrete incorporating ITZ water-cement ratio gradients, aggregate size distributions, and entrapped voids", Cement Concrete Res., 33, 103-113. https://doi.org/10.1016/S0008-8846(02)00931-6
  64. Oliver, J. (1996), "Modeling strong discontinuities in solid mechanics via strain softening constitutive equations. Part 1: Fundamentals, Part 2: Numerical simulation", Int. J. Numer. Meth. Eng., 39, 3575-3623. https://doi.org/10.1002/(SICI)1097-0207(19961115)39:21<3575::AID-NME65>3.0.CO;2-E
  65. Pichler, C., Lackner, R. and Mang, H.A. (2007), "A multiscale micromechanics model for the autogenousshrinkage deformation of early-age cement-based materials", Eng, Fracture Mech,, 74, 34-58. https://doi.org/10.1016/j.engfracmech.2006.01.034
  66. Pichler, B., Hellmichz, C. and Mang, H.A. (2007), "A combined fracture-micromechanics model for tensile strain-softening in brittle materials, based on propagation of interacting microcracks", Int. J. Numer. Anal. Meth. Geomech., 31, 111-132. https://doi.org/10.1002/nag.544
  67. Ramadoss, P. and Nagamani, K. (2008), "A new strength model for the high-performance fiber reinforced concrete", Comput. Concrete, 5(1), 21-36. https://doi.org/10.12989/cac.2008.5.1.021
  68. Reuss, A. (1929), "Berechnung der fliessgrenz von mischkristallen auf grund der plastizitatsbedingung fur einkristalle", Z. Angew Math. Mech., 9, 49-58. https://doi.org/10.1002/zamm.19290090104
  69. Riedel, W., Thoma, K., Hiermaier, S. and Schmolinske, E. (1999), "Penetration of reinforced concrete by BETAB- 500 numerical analysis using a new mecroscopic concrete model for hydrocode", Proceedings of 9 International Symposium, Interaction of the Effects of Munitions with Structures, Berlin, May.
  70. Romualdi, J.P. and Batson, G.B. (1963), "Mechanics of crack arrest in concrete, Journal of Engineering Mechanics", Division of Proceedings of the American Soci. Civ. Eng., 89(EM3), 147-168.
  71. Sanahuja, J., Dormieux, L. and Chanvillard, G. (2007). "Modeling elasticity of a hydrating cement paste", Cement Concrete Res., 37, 1427-1439. https://doi.org/10.1016/j.cemconres.2007.07.003
  72. Sanchez-Palencia, E. (1980), Non-homogeneous media and vibration theory: lecture notes in physics, Springer, NJ.
  73. Shah, S.P. and Rangan, B.V. (1971), "Fiber reinforced concrete properties", ACI J., 68, 126-135.
  74. Shin, K.J., Lee, K.M. and Chang, S.P. (2008), "Numerical modeling for cyclic crack bridging behavior of fiber reinforced cementitious composites", Struct. Eng. Mech., 30(2), 147-164. https://doi.org/10.12989/sem.2008.30.2.147
  75. Simone, A. and Sluys, L.J. (2004), "The use of displacement discontinuities in a rate dependent medium", Comput. Method. Appl. M., 193, 3015-3033. https://doi.org/10.1016/j.cma.2003.08.006
  76. Smit, R.J.M., Brekelmans, W.A.M. and Meijer, H.E.H. (1998), "Prediction of the mechanical behavior of nonlinear heterogeneous systems by multilevel finite element modeling", Comput. Method. Appl. M., 155, 181-192. https://doi.org/10.1016/S0045-7825(97)00139-4
  77. Smilauer, V. and Bazant, Z. (2010), "Identification of viscoelastic C-S-H behavior in mature cement paste by FFT-based homogenization method", Cement Concrete Res., 40, 197-207. https://doi.org/10.1016/j.cemconres.2009.10.003
  78. Smilauer, V. and Krejci, T. (2009), "Multiscale model for temperature distribution in hydrating concrete", Int. J. Multiscale Comp. Eng., 7, 135-151. https://doi.org/10.1615/IntJMultCompEng.v7.i2.50
  79. Smilauer, V. and Bittnar, Z. (2006), "Microstructure-based micromechanical prediction of elastic properties in hydrating cement paste", Cement Concrete Res., 36, 1708-1718. https://doi.org/10.1016/j.cemconres.2006.05.014
  80. Stock, A.F., Hannant, D.J. and Williams, R.I.T. (1979), "Effect of aggregate concentration upon the strength and modulus of elasticity of concrete", Mag. Concrete Res., 31, 225-234. https://doi.org/10.1680/macr.1979.31.109.225
  81. Sun, Z., Garboczi, E.J. and Shah, S.P. (2007), "Modeling the elastic properties of concrete composites: experiment, differential effective medium theory, and numerical simulation", Cement Concrete Compos., 29, 22-38. https://doi.org/10.1016/j.cemconcomp.2006.07.020
  82. Swamy, R.N. (1975), "Fiber reinforced concrete of cement and concrete", Materaux et Constructions Mater. Struct., 8(45), 235-254. https://doi.org/10.1007/BF02475172
  83. Tan, K.H., Paramasivam, P. and Tan, K.C. (1994), "Instantaneous and long-term deflections of steel fiber reinforced concrete beams", ACI Struct. J., 91(4), 384-393.
  84. Teng, T.L., Chu, Y.A., Chang, F.A. and Chin, H.S. (2004), "Calculating the elastic moduli of steel-fiber reinforced concrete using a dedicated empirical formula", Comp. Mater. Sci., 31, 337-346. https://doi.org/10.1016/j.commatsci.2004.04.003
  85. Terada, K. and Kikuchi, N. (1995), "Nonlinear homogenization method for practical applications", S. Ghosh and M. ostoja-Starzewski, EDS, Computational Methods in Micromechanics, ASME, New York, AMD-212/MD-62, 1-16.
  86. Terada, K. and Kikuchi, N. (2001), "A class of general algorithms for multi-scale analysis of heterogeneous media", Comput. Method. Appl. M., 190, 5427-5464. https://doi.org/10.1016/S0045-7825(01)00179-7
  87. Thomee, B., Schikora, K. and Bletzinger, K.U. (2006), "Material modeling of steel fiber reinforced concrete", Comput. Concrete, 3(4), 197-212. https://doi.org/10.12989/cac.2006.3.4.197
  88. Ulm, F.J., Eric Lemarchand, E. and Heukamp, F.H. (2003), "Elements of chemomechanics of calcium leaching of cement-based materials at different scales", Eng. Fracture Mech., 70 , 871-889. https://doi.org/10.1016/S0013-7944(02)00155-8
  89. Ulm, F.J. and Jennings, H.M. (2008), "Does C-S-H particle shape matter? A discussion of the paper 'Modelling elasticity of a hydrating cement paste', by Julien Sanahuja, Luc Dormieux and Gilles Chanvillard. CCR 37 (2007) 1427-1439", Cement Concrete Res., 38, 1126-1129.
  90. Ulm, F.J., Pellenq, R.J.M. and Vandamme, M. (2010), "C-concrete: from atoms to concrete structures", Nenad Bicanic, Rene Borst, Herbert Mang, Gunther Meschke (Edt.), Computational Modelling of Concrete Structures, CRC Press, Austria, 65-75.
  91. Ulm, F.J., Vandamme, M., Hamlin Jennings, M., Vanzo, J., Bentivegna, M., Krakowiak, K.J., Constantinides, G., Bobko, C.P. and Van Vliet, K.J. (2010), "Does microstructure matter for statistical nanoindentation techniques?", Cement Concrete Compos., 32, 92-99. https://doi.org/10.1016/j.cemconcomp.2009.08.007
  92. Voigt, W. (1889), "Uber die beziehung zwischen den beiden elastizitatskonstanten isotroper korper", Wied. Ann., 38, 573-587.
  93. Wang, Z.M., Kwan, A.K.H. and Chan, H.C. (1999), "Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh", Comp. Struct., 70, 533-544. https://doi.org/10.1016/S0045-7949(98)00177-1
  94. Wells, G.N. and Sluys, L.J. (2001), "A new method for modeling of cohesive cracks using finite elements", Int. J. Numer. Meth. Eng., 50(12), 2667-2682. https://doi.org/10.1002/nme.143
  95. Williamson, G.R. (1974), "The effect of steel fibers on the compressive strength of concrete", Int. Symp. on Fiber Reinforced Concrete, SP44-11, American Concrete Institute, 195-207.
  96. Wriggers, P. and Moftah, S.O. (2006), "Mesoscale models for concrete: homogenisation and damage behavior", Finite Elem. Anal. Des., 42, 623-636. https://doi.org/10.1016/j.finel.2005.11.008
  97. Zohdi, T.I. and Wriggers, P. (2001), "Computational micro-macro material testing", Arch. Comput. Method. E., 8, 131-228. https://doi.org/10.1007/BF02897871
  98. Zohdi, T.I. and Wriggers, P. (2005), Introduction to computational micromechanics, Springer, Berlin.

Cited by

  1. Modeling of Cohesive Fracture and Plasticity Processes in Composite Microstructures vol.142, pp.10, 2016, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001123
  2. Multiscale modeling of the effect of the interfacial transition zone on the modulus of elasticity of fiber-reinforced fine concrete vol.55, pp.1, 2015, https://doi.org/10.1007/s00466-014-1081-6
  3. Modeling of unilateral effect in brittle materials by a mesoscopic scale approach vol.15, pp.5, 2015, https://doi.org/10.12989/cac.2015.15.5.735
  4. 3-D global–local finite element analysis of shallow underground caverns in soft sedimentary rock vol.57, 2013, https://doi.org/10.1016/j.ijrmms.2012.07.034
  5. Multi-scale modelling for bending analysis of heterogeneous plates by coupling BEM and FEM vol.51, 2015, https://doi.org/10.1016/j.enganabound.2014.10.005
  6. Transient Thermal Multiscale Analysis for Rocket Motor Case: Mechanical Homogenization Approach vol.31, pp.2, 2017, https://doi.org/10.2514/1.T4929
  7. Homogenization of non-periodic zones in periodic domains using the embedded unit cell approach vol.179, 2017, https://doi.org/10.1016/j.compstruc.2016.11.001
  8. Practical Thermal Multi–Scale Analysis for Composite Materials–Mechanical-Orientated Approach 2018, https://doi.org/10.1080/01457632.2017.1357789
  9. Upscaling Cement Paste Microstructure to Obtain the Fracture, Shear, and Elastic Concrete Mechanical LDPM Parameters vol.10, pp.3, 2017, https://doi.org/10.3390/ma10030242
  10. Formulação multi-escala para a análise de flexão de placas considerando processos dissipativos na microestrutura e acoplamento MEC/MEF vol.22, pp.2, 2017, https://doi.org/10.1590/s1517-707620170002.0153
  11. A boundary element formulation to perform elastic analysis of heterogeneous microstructures vol.87, 2018, https://doi.org/10.1016/j.enganabound.2017.11.006
  12. Estimating the elastic moduli and isotropy of block in matrix (bim) rocks by computational homogenization vol.200, 2016, https://doi.org/10.1016/j.enggeo.2015.12.003
  13. Iterative Multiscale Approach for Heat Conduction With Radiation Problem in Porous Materials vol.140, pp.8, 2018, https://doi.org/10.1115/1.4039420
  14. A Review on Modeling Techniques of Cementitious Materials under Different Length Scales: Development and Future Prospects vol.2, pp.7, 2011, https://doi.org/10.1002/adts.201900047
  15. Lateral Displacement Measurement Device for Concrete Specimens with Noncylindrical Cross Section vol.31, pp.11, 2011, https://doi.org/10.1061/(asce)mt.1943-5533.0002879
  16. Iterative multi-scale approach for heat conduction with free convection problem in periodic hollow structures vol.158, pp.None, 2011, https://doi.org/10.1016/j.ijthermalsci.2020.106519
  17. Development of Reinforcement Grout Materials Based on Blast Furnace Slag according to the Content of Reinforcement Fiber vol.2021, pp.None, 2011, https://doi.org/10.1155/2021/6612857