References
- Aboudi, J. (1991), Mechanics of composite materials - a unified micromechanical approach, Elsevier, Amsterdam.
- Aboudi, J. (2003), "Micromechanical analysis of the finite elastic-viscoplastic response of multiphase composites", Int. J. Solids Struct., 40, 2793-2817. https://doi.org/10.1016/S0020-7683(03)00083-0
- Aboudi, J., Pindera, M.J. and Arnold, S.M. (2003), "Higher-order theory for periodic multiphase materials with inelastic phases", Int. J. Plasticity, 19(6), 805-847. https://doi.org/10.1016/S0749-6419(02)00007-4
- Ahmad, H.A. and Lagoudas, C.L. (1991), "Effective elastic properties of fiber-reinforced concrete with random fibers", J. Eng. Mech., 117(12), 2931-2938. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:12(2931)
- Asferg, J.L., Poulsen, P.N. and Nielsen, L.O. (2007), "A consistent partly cracked XFEM element for cohesive crack growth", Int. J. Numer. Meth. Eng., 72, 464-485. https://doi.org/10.1002/nme.2023
- Ashour, S.A., Wafa, F.F. and Kamal, M.I. (2000), "Effect of concrete compressive strength and tensile reinforcement ratio on the flexural behavior of fibruous concrete beams", Eng. Struct., 22(9), 1145-1158. https://doi.org/10.1016/S0141-0296(99)00052-8
- Benssousan, A., Lions, J.L. and Papanicoulau, G. (1978), Asymptotic analysis for periodic structures, North-Holland, Amsterdam.
- Bentz, D.P., Garboczi, E.J. and Lagergren, E.S. (1998), "Multi-scale microstructural modelling of concrete diffusivity: identification of significant variables", Cement Concrete Aggr., 20(1), 129-139. https://doi.org/10.1520/CCA10446J
- Bullard, J.W. and Garboczi, E.J. (2006), "A model investigation of the influence of particle shape on portland cement hydration", Cement Concrete Res., 36(6),1007-1015. https://doi.org/10.1016/j.cemconres.2006.01.003
- Christensen, R.M. and Lo, K.H. (1979), "Solution for effective shear properties in three phase sphere and cylinder models", J. Mech. Phys. Solids, 27, 315-330. https://doi.org/10.1016/0022-5096(79)90032-2
- Constantinides, G. and Ulm, F.J. (2004), "The effect of two types of C-S-H on the elasticity of cement-based materials: results from nanoindentation and micromechanical modeling", Cement Concrete Res., 34(1), 67-80. https://doi.org/10.1016/S0008-8846(03)00230-8
- Cusatis, G. and Cedolin, L. (2007), "Two-scale study of concrete fracturing behavior", Eng. Fracture Mech., 74, 3-17. https://doi.org/10.1016/j.engfracmech.2006.01.021
- de Borst, R., Pamin, J. and Geers, M.G.D. (1999), "On coupled gradient-dependent plasticity and damage theories with a view to localization analysis", Eur. J. Mech. A - Solids, 18(6), 939-962. https://doi.org/10.1016/S0997-7538(99)00114-X
- de Borst, R. (2002), "Some recent issues in computational failure mechanics", Int. J. Numer. Meth. Eng., 52, 63-95.
-
DeJong, M.J. and Ulm, F.J. (2007), "The nanogranular behavior of C-S-H at elevated temperatures (up to 700
$^{\circ}C$ )", Cement Concrete Res., 37, 1-12. https://doi.org/10.1016/j.cemconres.2006.09.006 - Drucker, D.C. and Prager, W. (1952), "Soil mechanics and plastic analysis or limit design", Q. Appl. Math., 10, 157-165. https://doi.org/10.1090/qam/48291
- Eshelby, J.D. (1957), "The determination of the field of an ellipsoidal inclusion and related problems", Proc. R. Soc. Lond. A., 241, 376-396. https://doi.org/10.1098/rspa.1957.0133
- Ezeldin, A.S. and Balagaru, P.N. (1992), "Normal and high strength fiber reinforced concrete under compression", J. Mater. Civil Eng., 4(4), 415-429. https://doi.org/10.1061/(ASCE)0899-1561(1992)4:4(415)
- Feyel, F. (2003), "A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua", Comput. Method. Appl. M., 192, 3233-3244. https://doi.org/10.1016/S0045-7825(03)00348-7
- Feyel, F. and Chaboche, J.L. (2000), "FE2 Multiscale approach for modeling the elastoviscoplastic behavior of long fiber Sic/Ti composite materials", Comput. Method. Appl. M., 183, 309-330. https://doi.org/10.1016/S0045-7825(99)00224-8
- Fish, J. and Shek, K.L. (1999), "Finite deformation plasticity of composite structures: computational models and adaptive strategies", Comput. Method. Appl. M., 172, 145-174. https://doi.org/10.1016/S0045-7825(98)00228-X
- Fish, J., Shek, K., Pandheeradi, M. and Shephard, M.S. (1997), "Computational plasticity for composite structures based on mathematical homogenization: theory and practice", Comput. Method. Appl. M., 148, 53-73. https://doi.org/10.1016/S0045-7825(97)00030-3
- Fish, J. and Yu, Q. (2001), "Multiscale damage modeling for composite materials: theory and computational framework", Int. J. Numer. Meth. Eng., 52, 161-192. https://doi.org/10.1002/nme.276
- Fussl, J., Lackner, R., Eberhardsteiner, J. and Mang, H.A. (2008), "Failure modes and effective strength of twophase materials determined by means of numerical limit analysis", Acta Mech., 195, 185-202. https://doi.org/10.1007/s00707-007-0550-9
- Gal, E., Ganz, A., Chadad, L. and Krivoruk, R. (2008), "Development of a concrete unit cell", Int. J. Multiscale Comp. Eng., 6(5), 499-510. https://doi.org/10.1615/IntJMultCompEng.v6.i5.80
- Garboczi, E.J. and Berryman, J.G. (2000), "New effective medium theory for the diffusivity or conductivity of a multi-scale concrete microstructure model", Concrete Sci. Eng., 2(6), 88-96.
- Garboczi, E.J. and Berryman, J.G. (2001), "Elastic moduli of a material containing composite inclusions: effective medium theory and finite element computations", Mech. Mater., 33, 455-470. https://doi.org/10.1016/S0167-6636(01)00067-9
- Garboczi, E.J. and Bullard, J.W. (2000), "Shape analysis of a reference cement", Cement Concrete Res., 34(10), 1933-1937.
- Garboczi, E.J., Bullard, J.W. and Bentz, D.P. (2004), "Status of virtual testing of cement and concrete in the US - 2004", Concrete Int., 26(12), 33-37.
- Garboczi, E.J., Douglas, J.F. and Bohn, R.B. (2006), "A hybrid finite elementanalytical method for determining the intrinsic elastic moduli of particles having moderately extended shapes and a wide range of elastic properties", Mech. Mater., 38(8-10), 786-800. https://doi.org/10.1016/j.mechmat.2005.06.012
- Garboczi, E.J. and Day, A.R. (1995), "An algorithm for computing the effective linear elastic properties of heterogeneous materials: three-dimensional results for composites with equal phase Poisson ratios", J. Mech. Phys. Solids., 43(9), 1349-1362. https://doi.org/10.1016/0022-5096(95)00050-S
- Geers, M.G.D., Kouznetsova, V. and Brekelmans, W.A.M. (2001), "Gradient-enhanced computational homogenization for the micro-macro scale transition", J. Phys. IV, 11, 145-152.
- Ghosh, S., Lee, K. and Moorthy, S. (1995), "Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method", Int. J. Solids Struct., 32, 27-62. https://doi.org/10.1016/0020-7683(94)00097-G
- Ghosh, S., Lee, K. and Moorthy, S. (1996), "Two scale analysis of heterogeneous elasticplastic materials with asymptotic homogenization and voronoi cell finite element model", Comput. Method. Appl. M., 132, 63-116. https://doi.org/10.1016/0045-7825(95)00974-4
- Ghosh, S., Lee, K. and Raghavan, P. (2001), "A multi-level computational model for multi-scale damage analysis in composite and porous materials", Int. J. Solids. Struct., 38, 2335-2385. https://doi.org/10.1016/S0020-7683(00)00167-0
- Gitman, I.M., Askes, H. and Sluys, L.J. (2007), "Representative volume: existence and size determination engineering", Fracture Mech., 74, 2518-2534. https://doi.org/10.1016/j.engfracmech.2006.12.021
- Gitman, I.M., Gitman, M.B. and Askes, H. (2006), "Quantification of stochastically stable representative volumes for random heterogeneous materials", Arch. Appl. Mech., 75, 79-92. https://doi.org/10.1007/s00419-005-0411-8
- Gitman, I.M., Askes, H. and Sluys, L.J. (2008), "Coupled-volume multi-scale modeling of quasi-brittle material", Eur. J. Mech. A - Solids, 27, 302-327. https://doi.org/10.1016/j.euromechsol.2007.10.004
- Guedes, J.M. and Kikuchi, N. (1990), "Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods", Comput. Method. Appl. M., 83, 143-198. https://doi.org/10.1016/0045-7825(90)90148-F
- Gutierrez, M.A. (2004), "Energy release control for numerical simulations of failure in quasi-brittle solids", Commun. Numer. Meth. Eng., 20, 19-29.
- Haecker, C.J., Garboczi, E.J., Bohn, R.B., Sun, Z., Voigt, T. and Shah, S.P (2005), "Modeling the linear elastic properties of cement paste", Cement Concrete Res., 35(10), 1948-1960. https://doi.org/10.1016/j.cemconres.2005.05.001
- Haffner, S., Eckardt, S., Luther, T. and Koknke, C. (2006), "Mesoscale modeling of concrete: geometry and numerics", Comp. Struct., 84, 450-461. https://doi.org/10.1016/j.compstruc.2005.10.003
- Halpin, J.C. and Kardos, J.L. (1976), "Halpin-Tsai equations: a review", Polym. Eng. Sci., 1976, 16(5), 344-352. https://doi.org/10.1002/pen.760160512
- Hashin, Z. (1962), "The elastic moduli of heterogeneous materials", J. Appl. Mech., 29, 143-150. https://doi.org/10.1115/1.3636446
- He, H., Guo, Z., Stroeven, P., Stroeven, M. and Sluys, L.H. (2009), "Influence of particle packing on elastic properties of concrete", Proceeding of The First International Conference on Computational Technologies in Concrete Structures (CTCS'09), Jeju, Korea, May, 1177-1198.
- Hill, R. (1965), "A self-consistent mechanics of composite materials", J. Mech. Phys. Solids, 13, 357-372.
- Hung, L.T., Dormieux, L., Jeannin, L., Burlion, N. and Barthelemy, J.F. (2008), "Nonlinear behavior of matrixinclusion composites under high confining pressure: application to concrete and mortar", C.R. Mecanique, 336, 670-676. https://doi.org/10.1016/j.crme.2008.05.009
- Ibrahimbegovic, A. and Markovic, D. (2003), "Strong coupling methods in multiphase and multiscale modeling of inelastic behavior of heterogeneous structures", Comput. Method. Appl. M., 192, 3089-3107. https://doi.org/10.1016/S0045-7825(03)00342-6
- Jirasek, M. (2000), "Comparative study on finite elements with embedded discontinuities", Comput. Method. Appl. M., 188, 307-330. https://doi.org/10.1016/S0045-7825(99)00154-1
- Johnston, C.D. (1974), "A review of mechanical properties, fiber reinforced concrete", Steel Fiber Reinforced Concrete, ACI Publication, SP-44, 127-142.
- Kouznetsova, V., Geers, M.G.D. and Brekelmans, W.A.M. (2002), "Multi-scale constitutive modeling of heterogeneous materials with a gradient tenhanced computational homogenization scheme", Int. J. Numer. Meth. Eng., 54, 1235-1260. https://doi.org/10.1002/nme.541
- Kouznetsova, V., Brekelmans, W.A. and Baaijens, F.P.T. (2001), "An approach to micro-macro modeling of heterogeneous materials", Comp. Mech., 27, 37-48. https://doi.org/10.1007/s004660000212
- Lee, J., Xi, Y., Willam, K. and Jung, Y. (2009), "A multiscale model for modulus of elasticity of concrete at high temperatures", Cement Concrete Res., 39, 754-762. https://doi.org/10.1016/j.cemconres.2009.05.008
- Mang, H.A., Aigner, E., Eberhardsteiner, J., Hackspiel, C., Hellmich, C., Hofstetter, K., Lackner, R., Pichler, B., Scheiner, S. and Stürzenbecher, R. (2009), "Computational multiscale analysis in civil engineering", Int. Multiscale Mech., 2(2), 109-128. https://doi.org/10.12989/imm.2009.2.2.109
- Mang, H.A., Lackner, R., Meschke, G. and Mosler, J. (2003), "Computational modeling of concrete structures", Karihaloo BL, Ritchie RO, Milne I, de Borst R, Mang HA, (editors), Comprehensive structural integrity, Numerical and computational methods, 3. Oxford: Elsevier Science, 541-606.
- Mansur, M.A., Chin, M.S. and Wee, T.H. (1999), "Stress-strain relationship of high strength fiber concrete in compression", J. Mater. Civil Eng., 11(1), 21-29. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:1(21)
- Markovic, D. and Ibrahimbegovic, A. (2004), "On micro-macro interface conditions for micro scale based FEM for inelastic behavior of heterogeneous materials", Comput. Method. Appl. M., 193, 5503-5523. https://doi.org/10.1016/j.cma.2003.12.072
- Matsui, K., Terada, K. and Yuge, K. (2004), "Two-scale finite element analysis of heterogeneous solids with periodic microstructures", Comp. Struct., 82, 593-606. https://doi.org/10.1016/j.compstruc.2004.01.004
- Meschke, G. and Dumstorff, P. (2007), "Energy-based modeling of cohesive and cohesionless cracks via XFEM", Comput. Method. Appl. M., 196, 2338-2357. https://doi.org/10.1016/j.cma.2006.11.016
- Moes, N. and Belytschko, T. (2002), "Extended finite element method for cohesive crack growth", Eng. Fracture Mech., 69, 813-833. https://doi.org/10.1016/S0013-7944(01)00128-X
- Miehe, C. and Koch, A. (2002), "Computational micro-to-macro transition of discretized microstructures undergoing small strain", Arch. Appl. Mech., 72, 300-317. https://doi.org/10.1007/s00419-002-0212-2
- Mori, T. and Tanaka, K. (1973), "Average stress in the matrix and average elastic energy of materials with misfitting inclusions", Acta Metall., 21, 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
- Nadeau, J.C. (2003), "A multiscale model for effective moduli of concrete incorporating ITZ water-cement ratio gradients, aggregate size distributions, and entrapped voids", Cement Concrete Res., 33, 103-113. https://doi.org/10.1016/S0008-8846(02)00931-6
- Oliver, J. (1996), "Modeling strong discontinuities in solid mechanics via strain softening constitutive equations. Part 1: Fundamentals, Part 2: Numerical simulation", Int. J. Numer. Meth. Eng., 39, 3575-3623. https://doi.org/10.1002/(SICI)1097-0207(19961115)39:21<3575::AID-NME65>3.0.CO;2-E
- Pichler, C., Lackner, R. and Mang, H.A. (2007), "A multiscale micromechanics model for the autogenousshrinkage deformation of early-age cement-based materials", Eng, Fracture Mech,, 74, 34-58. https://doi.org/10.1016/j.engfracmech.2006.01.034
- Pichler, B., Hellmichz, C. and Mang, H.A. (2007), "A combined fracture-micromechanics model for tensile strain-softening in brittle materials, based on propagation of interacting microcracks", Int. J. Numer. Anal. Meth. Geomech., 31, 111-132. https://doi.org/10.1002/nag.544
- Ramadoss, P. and Nagamani, K. (2008), "A new strength model for the high-performance fiber reinforced concrete", Comput. Concrete, 5(1), 21-36. https://doi.org/10.12989/cac.2008.5.1.021
- Reuss, A. (1929), "Berechnung der fliessgrenz von mischkristallen auf grund der plastizitatsbedingung fur einkristalle", Z. Angew Math. Mech., 9, 49-58. https://doi.org/10.1002/zamm.19290090104
- Riedel, W., Thoma, K., Hiermaier, S. and Schmolinske, E. (1999), "Penetration of reinforced concrete by BETAB- 500 numerical analysis using a new mecroscopic concrete model for hydrocode", Proceedings of 9 International Symposium, Interaction of the Effects of Munitions with Structures, Berlin, May.
- Romualdi, J.P. and Batson, G.B. (1963), "Mechanics of crack arrest in concrete, Journal of Engineering Mechanics", Division of Proceedings of the American Soci. Civ. Eng., 89(EM3), 147-168.
- Sanahuja, J., Dormieux, L. and Chanvillard, G. (2007). "Modeling elasticity of a hydrating cement paste", Cement Concrete Res., 37, 1427-1439. https://doi.org/10.1016/j.cemconres.2007.07.003
- Sanchez-Palencia, E. (1980), Non-homogeneous media and vibration theory: lecture notes in physics, Springer, NJ.
- Shah, S.P. and Rangan, B.V. (1971), "Fiber reinforced concrete properties", ACI J., 68, 126-135.
- Shin, K.J., Lee, K.M. and Chang, S.P. (2008), "Numerical modeling for cyclic crack bridging behavior of fiber reinforced cementitious composites", Struct. Eng. Mech., 30(2), 147-164. https://doi.org/10.12989/sem.2008.30.2.147
- Simone, A. and Sluys, L.J. (2004), "The use of displacement discontinuities in a rate dependent medium", Comput. Method. Appl. M., 193, 3015-3033. https://doi.org/10.1016/j.cma.2003.08.006
- Smit, R.J.M., Brekelmans, W.A.M. and Meijer, H.E.H. (1998), "Prediction of the mechanical behavior of nonlinear heterogeneous systems by multilevel finite element modeling", Comput. Method. Appl. M., 155, 181-192. https://doi.org/10.1016/S0045-7825(97)00139-4
- Smilauer, V. and Bazant, Z. (2010), "Identification of viscoelastic C-S-H behavior in mature cement paste by FFT-based homogenization method", Cement Concrete Res., 40, 197-207. https://doi.org/10.1016/j.cemconres.2009.10.003
- Smilauer, V. and Krejci, T. (2009), "Multiscale model for temperature distribution in hydrating concrete", Int. J. Multiscale Comp. Eng., 7, 135-151. https://doi.org/10.1615/IntJMultCompEng.v7.i2.50
- Smilauer, V. and Bittnar, Z. (2006), "Microstructure-based micromechanical prediction of elastic properties in hydrating cement paste", Cement Concrete Res., 36, 1708-1718. https://doi.org/10.1016/j.cemconres.2006.05.014
- Stock, A.F., Hannant, D.J. and Williams, R.I.T. (1979), "Effect of aggregate concentration upon the strength and modulus of elasticity of concrete", Mag. Concrete Res., 31, 225-234. https://doi.org/10.1680/macr.1979.31.109.225
- Sun, Z., Garboczi, E.J. and Shah, S.P. (2007), "Modeling the elastic properties of concrete composites: experiment, differential effective medium theory, and numerical simulation", Cement Concrete Compos., 29, 22-38. https://doi.org/10.1016/j.cemconcomp.2006.07.020
- Swamy, R.N. (1975), "Fiber reinforced concrete of cement and concrete", Materaux et Constructions Mater. Struct., 8(45), 235-254. https://doi.org/10.1007/BF02475172
- Tan, K.H., Paramasivam, P. and Tan, K.C. (1994), "Instantaneous and long-term deflections of steel fiber reinforced concrete beams", ACI Struct. J., 91(4), 384-393.
- Teng, T.L., Chu, Y.A., Chang, F.A. and Chin, H.S. (2004), "Calculating the elastic moduli of steel-fiber reinforced concrete using a dedicated empirical formula", Comp. Mater. Sci., 31, 337-346. https://doi.org/10.1016/j.commatsci.2004.04.003
- Terada, K. and Kikuchi, N. (1995), "Nonlinear homogenization method for practical applications", S. Ghosh and M. ostoja-Starzewski, EDS, Computational Methods in Micromechanics, ASME, New York, AMD-212/MD-62, 1-16.
- Terada, K. and Kikuchi, N. (2001), "A class of general algorithms for multi-scale analysis of heterogeneous media", Comput. Method. Appl. M., 190, 5427-5464. https://doi.org/10.1016/S0045-7825(01)00179-7
- Thomee, B., Schikora, K. and Bletzinger, K.U. (2006), "Material modeling of steel fiber reinforced concrete", Comput. Concrete, 3(4), 197-212. https://doi.org/10.12989/cac.2006.3.4.197
- Ulm, F.J., Eric Lemarchand, E. and Heukamp, F.H. (2003), "Elements of chemomechanics of calcium leaching of cement-based materials at different scales", Eng. Fracture Mech., 70 , 871-889. https://doi.org/10.1016/S0013-7944(02)00155-8
- Ulm, F.J. and Jennings, H.M. (2008), "Does C-S-H particle shape matter? A discussion of the paper 'Modelling elasticity of a hydrating cement paste', by Julien Sanahuja, Luc Dormieux and Gilles Chanvillard. CCR 37 (2007) 1427-1439", Cement Concrete Res., 38, 1126-1129.
- Ulm, F.J., Pellenq, R.J.M. and Vandamme, M. (2010), "C-concrete: from atoms to concrete structures", Nenad Bicanic, Rene Borst, Herbert Mang, Gunther Meschke (Edt.), Computational Modelling of Concrete Structures, CRC Press, Austria, 65-75.
- Ulm, F.J., Vandamme, M., Hamlin Jennings, M., Vanzo, J., Bentivegna, M., Krakowiak, K.J., Constantinides, G., Bobko, C.P. and Van Vliet, K.J. (2010), "Does microstructure matter for statistical nanoindentation techniques?", Cement Concrete Compos., 32, 92-99. https://doi.org/10.1016/j.cemconcomp.2009.08.007
- Voigt, W. (1889), "Uber die beziehung zwischen den beiden elastizitatskonstanten isotroper korper", Wied. Ann., 38, 573-587.
- Wang, Z.M., Kwan, A.K.H. and Chan, H.C. (1999), "Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh", Comp. Struct., 70, 533-544. https://doi.org/10.1016/S0045-7949(98)00177-1
- Wells, G.N. and Sluys, L.J. (2001), "A new method for modeling of cohesive cracks using finite elements", Int. J. Numer. Meth. Eng., 50(12), 2667-2682. https://doi.org/10.1002/nme.143
- Williamson, G.R. (1974), "The effect of steel fibers on the compressive strength of concrete", Int. Symp. on Fiber Reinforced Concrete, SP44-11, American Concrete Institute, 195-207.
- Wriggers, P. and Moftah, S.O. (2006), "Mesoscale models for concrete: homogenisation and damage behavior", Finite Elem. Anal. Des., 42, 623-636. https://doi.org/10.1016/j.finel.2005.11.008
- Zohdi, T.I. and Wriggers, P. (2001), "Computational micro-macro material testing", Arch. Comput. Method. E., 8, 131-228. https://doi.org/10.1007/BF02897871
- Zohdi, T.I. and Wriggers, P. (2005), Introduction to computational micromechanics, Springer, Berlin.
Cited by
- Modeling of Cohesive Fracture and Plasticity Processes in Composite Microstructures vol.142, pp.10, 2016, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001123
- Multiscale modeling of the effect of the interfacial transition zone on the modulus of elasticity of fiber-reinforced fine concrete vol.55, pp.1, 2015, https://doi.org/10.1007/s00466-014-1081-6
- Modeling of unilateral effect in brittle materials by a mesoscopic scale approach vol.15, pp.5, 2015, https://doi.org/10.12989/cac.2015.15.5.735
- 3-D global–local finite element analysis of shallow underground caverns in soft sedimentary rock vol.57, 2013, https://doi.org/10.1016/j.ijrmms.2012.07.034
- Multi-scale modelling for bending analysis of heterogeneous plates by coupling BEM and FEM vol.51, 2015, https://doi.org/10.1016/j.enganabound.2014.10.005
- Transient Thermal Multiscale Analysis for Rocket Motor Case: Mechanical Homogenization Approach vol.31, pp.2, 2017, https://doi.org/10.2514/1.T4929
- Homogenization of non-periodic zones in periodic domains using the embedded unit cell approach vol.179, 2017, https://doi.org/10.1016/j.compstruc.2016.11.001
- Practical Thermal Multi–Scale Analysis for Composite Materials–Mechanical-Orientated Approach 2018, https://doi.org/10.1080/01457632.2017.1357789
- Upscaling Cement Paste Microstructure to Obtain the Fracture, Shear, and Elastic Concrete Mechanical LDPM Parameters vol.10, pp.3, 2017, https://doi.org/10.3390/ma10030242
- Formulação multi-escala para a análise de flexão de placas considerando processos dissipativos na microestrutura e acoplamento MEC/MEF vol.22, pp.2, 2017, https://doi.org/10.1590/s1517-707620170002.0153
- A boundary element formulation to perform elastic analysis of heterogeneous microstructures vol.87, 2018, https://doi.org/10.1016/j.enganabound.2017.11.006
- Estimating the elastic moduli and isotropy of block in matrix (bim) rocks by computational homogenization vol.200, 2016, https://doi.org/10.1016/j.enggeo.2015.12.003
- Iterative Multiscale Approach for Heat Conduction With Radiation Problem in Porous Materials vol.140, pp.8, 2018, https://doi.org/10.1115/1.4039420
- A Review on Modeling Techniques of Cementitious Materials under Different Length Scales: Development and Future Prospects vol.2, pp.7, 2011, https://doi.org/10.1002/adts.201900047
- Lateral Displacement Measurement Device for Concrete Specimens with Noncylindrical Cross Section vol.31, pp.11, 2011, https://doi.org/10.1061/(asce)mt.1943-5533.0002879
- Iterative multi-scale approach for heat conduction with free convection problem in periodic hollow structures vol.158, pp.None, 2011, https://doi.org/10.1016/j.ijthermalsci.2020.106519
- Development of Reinforcement Grout Materials Based on Blast Furnace Slag according to the Content of Reinforcement Fiber vol.2021, pp.None, 2011, https://doi.org/10.1155/2021/6612857