• Title/Summary/Keyword: mesoscale concrete finite element model

Search Result 8, Processing Time 0.02 seconds

Mesoscale modelling of concrete for static and dynamic response analysis -Part 1: model development and implementation

  • Tu, Zhenguo;Lu, Yong
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.197-213
    • /
    • 2011
  • Concrete is a heterogeneous material exhibiting quasi-brittle behaviour. While homogenization of concrete is commonly accepted in general engineering applications, a detailed description of the material heterogeneity using a mesoscale model becomes desirable and even necessary for problems where drastic spatial and time variation of the stress and strain is involved, for example in the analysis of local damages under impact, shock or blast load. A mesoscale model can also assist in an investigation into the underlying mechanisms affecting the bulk material behaviour under various stress conditions. Extending from existing mesoscale model studies, where use is often made of specialized codes with limited capability in the material description and numerical solutions, this paper presents a mesoscale computational model developed under a general-purpose finite element environment. The aim is to facilitate the utilization of sophisticated material descriptions (e.g., pressure and rate dependency) and advanced numerical solvers to suit a broad range of applications, including high impulsive dynamic analysis. The whole procedure encompasses a module for the generation of concrete mesoscale structure; a process for the generation of the FE mesh, considering two alternative schemes for the interface transition zone (ITZ); and the nonlinear analysis of the mesoscale FE model with an explicit time integration approach. The development of the model and various associated computational considerations are discussed in this paper (Part 1). Further numerical studies using the mesoscale model for both quasi-static and dynamic loadings will be presented in the companion paper (Part 2).

Modelling of concrete structures subjected to shock and blast loading: An overview and some recent studies

  • Lu, Yong
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.235-249
    • /
    • 2009
  • The response of concrete structures subjected to shock and blast load involves a rapid transient phase, during which material breach may take place. Such an effect could play a crucial role in determining the residual state of the structure and the possible dispersion of the fragments. Modelling of the transient phase response poses various challenges due to the complexities arising from the dynamic behaviour of the materials and the numerical difficulties associated with the evolving material discontinuity and large deformations. Typical modelling approaches include the traditional finite element method in conjunction with an element removal scheme, various meshfree methods such as the SPH, and the mesoscale model. This paper is intended to provide an overview of several alternative approaches and discuss their respective applicability. Representative concrete material models for high pressure and high rate applications are also commented. Several recent application studies are introduced to illustrate the pros and cons of different modelling options.

Mesoscale modelling of concrete for static and dynamic response analysis -Part 2: numerical investigations

  • Lu, Yong;Tu, Zhenguo
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.215-231
    • /
    • 2011
  • As a brittle and heterogeneous material, concrete behaves differently under different stress conditions and its bulk strength is loading rate dependent. To a large extent, the varying behavioural properties of concrete can be explained by the mechanical failure processes at a mesoscopic level. The development of a computational mesoscale model in a general finite element environment, as presented in the preceding companion paper (Part 1), makes it possible to investigate into the underlying mechanisms governing the bulk-scale behaviour of concrete under a variety of loading conditions and to characterise the variation in quantitative terms. In this paper, we first present a series of parametric studies on the behaviour of concrete material under quasi-static compression and tension conditions. The loading-face friction effect, the possible influences of the non-homogeneity within the mortar and ITZ phases, and the effect of randomness of coarse aggregates are examined. The mesoscale model is then applied to analyze the dynamic behaviour of concrete under high rate loading conditions. The potential contribution of the mesoscopic heterogeneity towards the generally recognized rate enhancement of the material compressive strength is discussed.

Cohesive Interface Model on Concrete Materials

  • Rhee In-Kyu;Roh Young-Sook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1053-1064
    • /
    • 2005
  • The mechanical damage of concrete is normally attributed to the formation of microcracks and their propagation and coalescence into macroscopic cracks. This physical degradation is caused from progressive and hierarchical damage of the microstructure due to debonding and slip along bimaterial interfaces at the mesoscale. Their growth and coalescence leads to initiation of hairline discrete cracks at the mesoscale. Eventually, single or multiple major discrete cracks develop at the macroscale. In this paper, from this conceptual model of mechanical damage in concrete, the computational efforts were made in order to characterize physical cracks and how to quantify the damage of concrete materials within the laws of thermodynamics with the aid of interface element in traditional finite element methodology. One dimensional effective traction/jump constitutive interface law is introduced in order to accommodate the normal opening and tangential slips on the interfaces between different materials(adhesion) or similar materials(cohesion) in two and three dimensional problems. Mode I failure and mixed mode failure of various geometries and boundary conditions are discussed in the sense of crack propagation and their spent of fracture energy under monotonic displacement control.

Fiber reinforced concrete properties - a multiscale approach

  • Gal, Erez;Kryvoruk, Roman
    • Computers and Concrete
    • /
    • v.8 no.5
    • /
    • pp.525-539
    • /
    • 2011
  • This paper describes the development of a fiber reinforced concrete (FRC) unit cell for analyzing concrete structures by executing a multiscale analysis procedure using the theory of homogenization. This was achieved through solving a periodic unit cell problem of the material in order to evaluate its macroscopic properties. Our research describes the creation of an FRC unit cell through the use of concrete paste generic information e.g. the percentage of aggregates, their distribution, and the percentage of fibers in the concrete. The algorithm presented manipulates the percentage and distribution of these aggregates along with fiber weight to create a finite element unit cell model of the FRC which can be used in a multiscale analysis of concrete structures.

Reconstruction of internal structures and numerical simulation for concrete composites at mesoscale

  • Du, Chengbin;Jiang, Shouyan;Qin, Wu;Xu, Hairong;Lei, Dong
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.135-147
    • /
    • 2012
  • At mesoscale, concrete is considered as a three-phase composite material consisting of the aggregate particles, the cement matrix and the interfacial transition zone (ITZ). The reconstruction of the internal structures for concrete composites requires the identification of the boundary of the aggregate particles and the cement matrix using digital imaging technology followed by post-processing through MATLAB. A parameter study covers the subsection transformation, median filter, and open and close operation of the digital image sample to obtain the optimal parameter for performing the image processing technology. The subsection transformation is performed using a grey histogram of the digital image samples with a threshold value of [120, 210] followed by median filtering with a $16{\times}16$ square module based on the dimensions of the aggregate particles and their internal impurity. We then select a "disk" tectonic structure with a specific radius, which performs open and close operations on the images. The edges of the aggregate particles (similar to the original digital images) are obtained using the canny edge detection method. The finite element model at mesoscale can be established using the proposed image processing technology. The location of the crack determined through the numerical method is identical to the experimental result, and the load-displacement curve determined through the numerical method is in close agreement with the experimental results. Comparisons of the numerical and experimental results show that the proposed image processing technology is highly effective in reconstructing the internal structures of concrete composites.

Numerical simulation on the cyclic behavior of ultra-high performance concrete filled steel tubular column

  • Heng Cai;Fangqian Deng
    • Structural Engineering and Mechanics
    • /
    • v.85 no.5
    • /
    • pp.693-707
    • /
    • 2023
  • In order to deeply reveal the working mechanism of ultra-high performance concrete (UHPC) filled steel tubular columns (UHPCFSTs) under cyclic loading, a three-dimension (3D) macro-mesoscale finite element (FE) model was established considering the randomness of steel fibers and the damage of UHPC. Model correctness and reliability were verified based on the experimental results. Next, the whole failure process of UHPC reinforced with steel fibers, passive confinement effect and internal force distribution laws were comprehensively analyzed and discussed. Finally, a simplified and practical method was proposed for predicting the ultimate bending strengths of UHPCFSTs. It was found that the non-uniform confinement effect of steel tube occurred when the drift ratio exceeded 0.5%, while the confining stress increased then decreased afterwards. There was preferable synergy between the steel tube and UHPC until failure. Compared with experimental results, the ultimate bending strengths of UHPCFSTs were undervalued by the current code provisions such as AISC360-10, EC4 and GB50936 with computed mean values (MVs) of 0.855, 0.880 and 0.836, respectively. The proposed practical method was highly accurate, as evidenced by a mean value of 1.058.

Numerical Implication of Concrete Material Damage at the Finite Element Levels (콘크리트 재료손상에 대한 유한요소상의 의미)

  • Rhee, In-Kyu;Roh, Young-Sook;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.37-46
    • /
    • 2006
  • The principal objective of this study is to assess the hierarchical effects of defects on the elastic stiffness properties at different levels of observation. In particular, quantitative damage measures which characterize the fundamental mode of degradation in the form of elastic damage provide quite insightful meanings at the level of constitutive relations and at the level of structures. For illustration, a total of three model problems of increasing complexity, a 1-D bar structure, a 2-D stress concentration problem, and a heterogeneous composite material made of a matrix with particle inclusions. Considering a damage scenario for the particle inclusions the material system degrades from a composite with very stiff inclusions to a porous material with an intact matrix skeleton. In other damage scenario for the matrix, the material system degrades from a composite made of a very stiff skeleton to a disconnected assembly of particles because of progressive matrix erosion. The trace-back and forth of tight bounds in terms of the reduction of the lowest eigenvalues are extensively discussed at different levels of observation.