References
- Berger, J. and Wilson, D. (2011), Hole in Southwest Jet Attributed to Cracks, The New York Times.
- Cochrane, C., Koncar, V., Lewandowski, M. and Dufour, C. (2007), "Design and development of a flexible strain sensor for textile structures based on a conductive polymer composite", Sensors, 7(4), 473-492. https://doi.org/10.3390/s7040473
- Correa-Duarte, M.A., Salgueirino Maceira, V., Rinaldi, A., Sieradzki, K., Giersig, M. and Liz-Marzan, L.M. (2007), "Optical strain detectors based on gold/elastomer nanoparticulated films", Gold Bull., 40(1), 6-14. https://doi.org/10.1007/BF03215287
- Faraday, M. (1857), "The bakerian lecture: experimental relations of gold (and other metals) to light", Philos. T. R. Soc. L., 147, 145-181. https://doi.org/10.1098/rstl.1857.0011
- Fudouzi, H. and Sawada, T. (2006), "Photonic rubber sheets with tunable color by elastic deformation", Langmuir, 22(3), 1365-1368. https://doi.org/10.1021/la0521037
- Goyal, A., Kumar, A., Patra, P.K., Mahendra, S., Tabatabaei, S., Alvarez, P.J.J., John, G. and Ajayan, P.M. (2009), "In situ synthesis of metal nanoparticle embedded free standing multifunctional PDMS films", Macromol. Rapid Comm., 30(13), 1116-1122. https://doi.org/10.1002/marc.200900174
- Hendricks, W.R. (1991), The Aloha Airlines accident - A new era for aging aircraft, (Eds. S.N. Atluri, S.G. Sampath and P. Tong) , Structural integrity of aging airplanes, Berlin and New York: Springer-Verlag.
- Knite, M., Teteris, V., Kiploka, A. and Kaupuzs, J. (2004), "Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor materials", Sensor Actuat A-Phys., 110(1-3), 142-149. https://doi.org/10.1016/j.sna.2003.08.006
- Kumar, P.S., Pal, S.K., Kumar, S. and Lakshminarayanan, V. (2007), "Dispersion of thiol stabilized gold nanoparticles in lyotropic liquid crystalline systems", Langmuir, 23(6), 3445-3449. https://doi.org/10.1021/la063318z
- Lee, B. (2003), "Review of the present status of optical fiber sensors", Opt. Fiber Technol., 9(2), 57-79. https://doi.org/10.1016/S1068-5200(02)00527-8
- Li, Y., Cheng, X.Y., Leung, M.Y., Tsang, J., Tao, X.M. and Yuen, M.C.W. (2005), "A flexible strain sensor from polypyrrole-coated fabrics", Synthetic Met., 155(1), 89-94. https://doi.org/10.1016/j.synthmet.2005.06.008
- Loh, K.J., Hou, T.C., Lynch, J.P. and Kotov, N.A. (2009), "Carbon nanotube sensing skins for spatial strain and impact damage identification", J. Nondestruct. Eval., 28(1), 9-25. https://doi.org/10.1007/s10921-009-0043-y
- Martinez, F., Obieta, G., Uribe, I., Sikora, T. and Ochoteco, E. (2010), "Polymer-based self-standing flexible strain sensor", Sensors, 2010.
- Matsuzaki, R. and Todoroki, A. (2007), "Wireless flexible capacitive sensor based on ultra-flexible epoxy resin for strain measurement of automobile tires", Sensor Actuat A-Phys., 140(1), 32-42. https://doi.org/10.1016/j.sna.2007.06.014
- Polte, J., Ahner, T.T., Delissen, F., Sokolov, S., Emmerling, F., Thunemann, A.F. and Kraehnert, R. (2010), "Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled In Situ XANES and SAXS evaluation", J. Am. Chem. Soc., 132(4), 1296-1301. https://doi.org/10.1021/ja906506j
- Qian, X. and Park, H.S. (2010a), "The influence of mechanical strain on the optical properties of spherical gold nanoparticles", J. Mech. Phys. Solids, 58(3), 330-345. https://doi.org/10.1016/j.jmps.2009.12.001
- Qian, X. and Park, H.S. (2010b), "Strain effects on the SERS enhancements for spherical silver nanoparticles", Nanotechnology, 21(365704), 1-8.
- Siffalovic, P., Chitu, L., Vegso, K., Majkova, E., Jergel, M., Weis, M., Luby, S., Capek, I., Keckes, J., Maier, G. A., Satka, A., Perlich, J. and Roth, S.V. (2010), "Towards strain gauges based on a self-assembled nanoparticle monolayer-SAXS study", Nanotechnology, 21(385702), 1-5.
- Wang, X., Zhou, J., Song, J., Liu, J., Xu, N. and Wang, Z.L. (2006), "Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire", Nano Lett., 6(12), 2768-2772. https://doi.org/10.1021/nl061802g
- Zhou, J., Gu, Y., Fei, P., Mai, W., Gao, Y., Yang, R., Bao, G. and Wang, Z.L. (2008), "Flexible piezotronic strain sensor", Nano Lett., 8(9), 3035-3040. https://doi.org/10.1021/nl802367t
- Zhou, M., Wang, B., Rozynek, Z., Xie, Z., Fossum, J.O., Yu, X. and Raaen, S. (2009), "Minute synthesis of extremely stable gold nanoparticles", Nanotechnology, 20(505606), 1-10.
Cited by
- Engineering surface ligands of nanocrystals to design high performance strain sensor arrays through solution processes vol.5, pp.9, 2017, https://doi.org/10.1039/C7TC00230K
- A novel method for in situ synthesis of SERS-active gold nanostars on polydimethylsiloxane film vol.53, pp.37, 2017, https://doi.org/10.1039/C7CC01776F
- Subwavelength Resonant Gratings for Micrometric Strain Sensors vol.23, pp.2, 2017, https://doi.org/10.1109/JSTQE.2016.2596261
- Flexible Sensors Based on Nanoparticles vol.7, pp.10, 2013, https://doi.org/10.1021/nn402728g
- Polydimethylsiloxane thin film characterization using all-optical photoacoustic mechanism vol.52, pp.25, 2013, https://doi.org/10.1364/AO.52.006239
- High-efficiency optical ultrasound generation using one-pot synthesized polydimethylsiloxane-gold nanoparticle nanocomposite vol.29, pp.8, 2012, https://doi.org/10.1364/JOSAB.29.002016
- A stretchable crumpled graphene photodetector with plasmonically enhanced photoresponsivity vol.9, pp.12, 2017, https://doi.org/10.1039/C6NR09338H
- Shell-binary nanoparticle materials with variable electrical and electro-mechanical properties vol.10, pp.3, 2018, https://doi.org/10.1039/C7NR07912E
- Broadband miniature fiber optic ultrasound generator vol.22, pp.15, 2014, https://doi.org/10.1364/OE.22.018119
- Tuning the dielectric properties of metallic-nanoparticle/elastomer composites by strain vol.7, pp.10, 2015, https://doi.org/10.1039/C4NR06690A
- Design of conductive composite elastomers for stretchable electronics vol.9, pp.2, 2014, https://doi.org/10.1016/j.nantod.2014.04.009
- Wearable strain sensor made of carbonized cotton cloth vol.28, pp.4, 2017, https://doi.org/10.1007/s10854-016-5954-7
- High Strength Conductive Composites with Plasmonic Nanoparticles Aligned on Aramid Nanofibers vol.26, pp.46, 2016, https://doi.org/10.1002/adfm.201603230
- Cellular uptake and cytotoxicity of a near-IR fluorescent corrole–TiO2 nanoconjugate vol.140, 2014, https://doi.org/10.1016/j.jinorgbio.2014.06.015
- Nanoscale Sensor Technologies for Disease Detection via Volatolomics vol.11, pp.46, 2015, https://doi.org/10.1002/smll.201501904
- On-demand curing of polydimethylsiloxane (PDMS) using the photothermal effect of gold nanoparticles vol.9, pp.25, 2017, https://doi.org/10.1039/C7NR01423F
- A distributed piezo-polymer scour net for bridge scour hole topography monitoring vol.1, pp.2, 2014, https://doi.org/10.12989/smm.2014.1.2.183
- Gold nanoparticle-polydimethylsiloxane films reflect light internally by optical diffraction and Mie scattering vol.2, pp.8, 2015, https://doi.org/10.1088/2053-1591/2/8/085005
- Thermal Dynamics of Plasmonic Nanoparticle Composites vol.119, pp.19, 2015, https://doi.org/10.1021/jp512701v
- Asymmetric Reduction of Gold Nanoparticles into Thermoplasmonic Polydimethylsiloxane Thin Films vol.5, pp.17, 2013, https://doi.org/10.1021/am4018785
- Geometric optics of gold nanoparticle-polydimethylsiloxane thin film systems vol.4, pp.2, 2014, https://doi.org/10.1364/OME.4.000375
- Gold nanoparticles reducedin situand dispersed in polymer thin films: optical and thermal properties vol.23, pp.37, 2012, https://doi.org/10.1088/0957-4484/23/37/375703
- Thermostable gold nanoparticle-doped silicone elastomer for optical materials vol.518, 2017, https://doi.org/10.1016/j.colsurfa.2017.01.028
- Corrugated Photoactive Thin Films for Flexible Strain Sensor vol.11, pp.10, 2018, https://doi.org/10.3390/ma11101970
- Engineering two-dimensional layered nanomaterials for wearable biomedical sensors and power devices vol.2, pp.11, 2011, https://doi.org/10.1039/c8qm00356d
- Embedded optical nanosensors for monitoring the processing and performance of polymer matrix composites vol.7, pp.46, 2011, https://doi.org/10.1039/c9tc03118a
- Photothermal Control over the Mechanical and Physical Properties of Polydimethylsiloxane vol.52, pp.10, 2019, https://doi.org/10.1021/acs.macromol.9b00134
- Infrared Plasmonics via Self-Organized Anisotropic Wrinkling of Au/PDMS Nanoarrays vol.1, pp.6, 2011, https://doi.org/10.1021/acsapm.9b00138
- Stretchable and Highly Sensitive Optical Strain Sensors for Human-Activity Monitoring and Healthcare vol.11, pp.37, 2011, https://doi.org/10.1021/acsami.9b09815
- Wearable sensors based on colloidal nanocrystals vol.6, pp.None, 2011, https://doi.org/10.1186/s40580-019-0180-7
- Real-time strain monitoring and damage detection of composites in different directions of the applied load using a microscale flexible Nylon/Ag strain sensor vol.19, pp.3, 2020, https://doi.org/10.1177/1475921719869986
- Maskless Formation of Conductive Carbon Layer on Leather for Highly Sensitive Flexible Strain Sensors vol.6, pp.9, 2011, https://doi.org/10.1002/aelm.202000549
- Nylon/Ag fiber sensor for real-time damage monitoring of composites subjected to dynamic loading vol.29, pp.11, 2011, https://doi.org/10.1088/1361-665x/abb646
- Highly Sensitive and Durable Sea-Urchin-Shaped Silver Nanoparticles Strain Sensors for Human-Activity Monitoring vol.13, pp.12, 2021, https://doi.org/10.1021/acsami.0c22756
- Performance of cement composite embeddable sensors for strain-based health monitoring of in-service structures vol.28, pp.2, 2021, https://doi.org/10.12989/sss.2021.28.2.181