DOI QR코드

DOI QR Code

State-space formulation for simultaneous identification of both damage and input force from response sensitivity

  • Lu, Z.R. (School of Engineering, Sun Yat-sen University) ;
  • Huang, M. (School of Engineering, Sun Yat-sen University) ;
  • Liu, J.K. (School of Engineering, Sun Yat-sen University)
  • 투고 : 2010.02.02
  • 심사 : 2011.04.18
  • 발행 : 2011.08.25

초록

A new method for both local damage(s) identification and input excitation force identification of beam structures is presented using the dynamic response sensitivity-based finite element model updating method. The state-space approach is used to calculate both the structural dynamic responses and the responses sensitivities with respect to structural physical parameters such as elemental flexural rigidity and with respect to the force parameters as well. The sensitivities of displacement and acceleration responses with respect to structural physical parameters are calculated in time domain and compared to those by using Newmark method in the forward analysis. In the inverse analysis, both the input excitation force and the local damage are identified from only several acceleration measurements. Local damages and the input excitation force are identified in a gradient-based model updating method based on dynamic response sensitivity. Both computation simulations and the laboratory work illustrate the effectiveness and robustness of the proposed method.

키워드

참고문헌

  1. Bathe, K.J. and Wilson, K.D. (1976), Numerical methods in finite element analysis, Englewood Cliffs, N.J., Prentice-Hall.
  2. Cattarius, J. and Inman, D.J. (1997), "Time domain analysis for damage detection in smart structures", Mech. Syst. Signal Pr., 11(3), 409-423. https://doi.org/10.1006/mssp.1996.0086
  3. Cawley, P. and Adams, R.D. (1979), "The location of defects in structures from easurements of natural frequencies", J. Strain Anal. Eng., 14(2), 49-57. https://doi.org/10.1243/03093247V142049
  4. Chen, J. and Li, J. (2004), "Simultaneous identification of structural parameters and input time history from output-only measurements", Comput. Mech., 33(5), 365-374. https://doi.org/10.1007/s00466-003-0538-9
  5. Doebling, S.W., Peterson. L.D. and Alvin, K.F. (1996), "Estimation of reciprocal residual flexibility from experimental modal data", AIAA J., 34, 1678-1685. https://doi.org/10.2514/3.13289
  6. Doebling, S.W., Farrar, C.R., Prime, M.B. and Shevitz, D.W. (1998), "A review of damage identification methods that examine changes in dynamic properties", Shock Vib., 30(2), 91-105. https://doi.org/10.1177/058310249803000201
  7. Frahat, C. and Hemez, F.M. (1993), "Updating of FE dynamic models using an element by element sensitivity methodology", AIAA J., 31, 1702-1711. https://doi.org/10.2514/3.11833
  8. Friswell, M.I. and Mottershead, J.E. (1995), Finite Element Model Updating in Structural Dynamics, Dordrecht: Kluwer Academic Publishers.
  9. Friswell, M.I. and Mottershead, J.E. (2001), "Inverse methods in structural health monitoring", DAMAS 2001, Proceedings of the 4th International Conference on Damage Assessment of Structures, Cardiff.
  10. Geradin, M. and Rixen, D. (1994), Mechanical vibration: theory and application to structural dynamics, New York, John Wiley & Sons.
  11. Gordis, J.H. (1999), "Artificial boundary conditions for model updating and damage detection", Mech. Syst. Signal Pr., 13(3), 437-448. https://doi.org/10.1006/mssp.1998.0192
  12. Goudreau, G.L. and Taylor, R.I. (1973), "Evaluation of numerical integration methods in elastodynamics", Comput. Method. Appl. M., 2(1), 69-97. https://doi.org/10.1016/0045-7825(73)90023-6
  13. Hansen, P.C. (1998), Rank-Deficient and Discrete Ill-posed Problems: Numerical Aspects of Linear Inversion, SIAM, Philadelphia, PA.
  14. Hemez, F.M. and Frahat, C. (1995), "Structural damage detection via a finite element model updating methodology", J. Analytical and Experimental Modal Analysis, 10, 152-166.
  15. Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O. Masri, S.F., Skelton, R.E., Soong, T.T., Spencer, B.F. and Yao, J.T.P. (1997), "Structural control: Past, present, and future", J. Eng. Mech-ASCE, 123(9), 897-971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)
  16. Jones, K. and Turcotte, J. (2002), "Finite element model updating using anti-resonant frequencies", J. Sound Vib., 252(4), 717-727. https://doi.org/10.1006/jsvi.2001.3697
  17. Law, S.S. and Lu, Z.R. (2004), "State space approach to calculate sensitivity of dynamic response." Proceedings of the 2004 ASME International Mechanical Engineering Congress and Exposition, Anaheim, California, November.
  18. Law, S.S. and Zhu X.Q. (2007), "Damage detection in concrete bridge structures under moving vehicular loads", J. Vib. Acoust., 129(1), 58-65. https://doi.org/10.1115/1.2202150
  19. Lim, T.W. (1991), "Structural damage detection using modal test data", AIAA J., 29, 2271-2274. https://doi.org/10.2514/3.10873
  20. Lu, Z.R. and Law, S.S. (2007), "Features of dynamic response sensitivity and its application in damage detection", J. Sound Vib., 303(1-2), 305-329. https://doi.org/10.1016/j.jsv.2007.01.021
  21. Majumder, L. and Manohar, C.S. (2003), "A time domain approach for damage detection in beam structures using vibration data with a moving oscillator as an excitation source", J. Sound Vib., 268(4), 699-716. https://doi.org/10.1016/S0022-460X(02)01555-9
  22. Majumder, L. and Manohar, C.S. (2004), "Nonlinear reduced models for beam damage detection using data on moving oscillator-beam interactions", Comput. Struct., 82(2-3), 301-314. https://doi.org/10.1016/j.compstruc.2003.08.007
  23. Narkis, Y. (1994), "Identification of crack location in vibrating simply supported beam", J. Sound Vib., 172(4), 549-558. https://doi.org/10.1006/jsvi.1994.1195
  24. Pandey, A.K., Biswas, M. and Samman, M.M. (1991), "Damage detection from change in curvature mode shapes", J. Sound Vib., 145(2), 321-332. https://doi.org/10.1016/0022-460X(91)90595-B
  25. Pandey, A.K. and Biswas, M. (1994), "Damage detection in structures using change in flexibility", J. Sound Vib., 169(1), 3-17. https://doi.org/10.1006/jsvi.1994.1002
  26. Ralston, A. and Wilf, H.S. (1960), Mathematical methods for digital computers, New York, Wiley.
  27. Ratcliffe, C.P. (1997), "Damage detection using a modified Laplacian operator on mode shape data", J. Sound Vib., 204(3), 505-517. https://doi.org/10.1006/jsvi.1997.0961
  28. Ricles, J.M. and Kosmatka, J.B. (1992), "Damage detection in elastic structures using vibration residual forces and weighted sensitivity", AIAA J., 30, 2310-2316. https://doi.org/10.2514/3.11219
  29. Rizos, P.F., Aspragathos, N. and Dimarogonas, A.D. (1990), "Identification of crack location and magnitude in a cantilever beam", J. Sound Vib., 138(3), 381-388. https://doi.org/10.1016/0022-460X(90)90593-O
  30. Salawu, O.S. (1997), "Detection of structural damage through changes in frequency: A review", Eng. Struct., 19(9), 718-723. https://doi.org/10.1016/S0141-0296(96)00149-6
  31. Sinha, J.K., Friswell, M.I. and Edwards, S. (2002), "Simplified models for the location of cracks in beam structures using measured vibration data", J. Sound Vib., 251(1), 13-38. https://doi.org/10.1006/jsvi.2001.3978
  32. Shi, Z.Y., Law, S.S. and Zhang, L.M. (2000), "Structural damage detection from modal strain energy change", J. Eng. Mech.- ASCE, 126(12), 1216-1223. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1216)
  33. Tikhonov, A.M. (1963), "On the solution of ill-posed problems and the method of regularization", Soviet Mathematics, 4, 1035-1038.
  34. Trendafilova, I. and Manoach, E. (2007), "Vibration-based damage detection in plates by using time series analysis", Mech. Syst. Signal Pr., 22(5), 1092-1106.
  35. Wang, Y.P., Liao, W.H. and Lee, C.L. (2001), "A state-space approach for dynamic analysis of sliding structures", Eng. Struct., 23(7), 790-801. https://doi.org/10.1016/S0141-0296(00)00096-1
  36. Wu, D. and Law, S.S. (2004), "Model error correction from truncated modal flexibility sensitivity and generic parameters. I: Simulation", Mech. Syst. Signal Pr., 18(6), 1381-1399. https://doi.org/10.1016/S0888-3270(03)00094-3
  37. Zou, T., Tong, L. and Steve, G.P. (2000), "Vibration based model-dependent damage (delamination) identification and health monitoring for composite structures- a review", J. Sound Vib., 230(2), 357-378. https://doi.org/10.1006/jsvi.1999.2624

피인용 문헌

  1. Structural damage identification with power spectral density transmissibility: numerical and experimental studies vol.15, pp.1, 2015, https://doi.org/10.12989/sss.2015.15.1.015
  2. Structural Damage Localization by the Principal Eigenvector of Modal Flexibility Change vol.9, pp.4, 2016, https://doi.org/10.3390/a9020024
  3. Substructural parameters and dynamic loading identification with limited observations vol.15, pp.1, 2015, https://doi.org/10.12989/sss.2015.15.1.169
  4. An Exact Approach for Structural Damage Assessment vol.2013, 2013, https://doi.org/10.1155/2013/230957
  5. An improved spectral decomposition flexibility perturbation method for finite element model updating vol.10, pp.12, 2011, https://doi.org/10.1177/1687814018814920
  6. Analysis of Factors Affecting the Accuracy of Moving Force Identification vol.21, pp.2, 2011, https://doi.org/10.1142/s021945542150019x