DOI QR코드

DOI QR Code

Controlling a lamprey-based robot with an electronic nervous system

  • Westphal, A. (Department of Biology and Marine Science Center, Northeastern University) ;
  • Rulkov, N.F. (Information Systems Laboratories, Inc.) ;
  • Ayers, J. (Department of Biology and Marine Science Center, Northeastern University) ;
  • Brady, D. (Department of Electrical and Computer Engineering, Northeastern University) ;
  • Hunt, M. (Ariel Inc.)
  • Received : 2010.03.15
  • Accepted : 2010.09.08
  • Published : 2011.07.25

Abstract

We are developing a biomimetic robot based on the Sea Lamprey. The robot consists of a cylindrical electronics bay propelled by an undulatory body axis. Shape memory alloy (SMA) actuators generate propagating flexion waves in five undulatory segments of a polyurethane strip. The behavior of the robot is controlled by an electronic nervous system (ENS) composed of networks of discrete-time map-based neurons and synapses that execute on a digital signal processing chip. Motor neuron action potentials gate power transistors that apply current to the SMA actuators. The ENS consists of a set of segmental central pattern generators (CPGs), modulated by layered command and coordinating neuron networks, that integrate input from exteroceptive sensors including a compass, accelerometers, inclinometers and a short baseline sonar array (SBA). The CPGs instantiate the 3-element hemi-segmental network model established from physiological studies. Anterior and posterior propagating pathways between CPGs mediate intersegmental coordination to generate flexion waves for forward and backward swimming. The command network mediates layered exteroceptive reflexes for homing, primary orientation, and impediment compensation. The SBA allows homing on a sonar beacon by indicating deviations in azimuth and inclination. Inclinometers actuate a bending segment between the hull and undulator to allow climb and dive. Accelerometers can distinguish collisions from impediment to allow compensatory reflexes. Modulatory commands mediate speed control and turning. A SBA communications interface is being developed to allow supervised reactive autonomy.

Keywords

References

  1. Arkin, R.C. (1998), Behavior-Based Robots, MIT Press, Cambridge, MA.
  2. Ayers, J. (2004), "Underwater walking", Arthopod Struct Dev, 33(3), 347-360. https://doi.org/10.1016/j.asd.2004.06.001
  3. Ayers, J., Davis, J. and Rudolph, A. J. (2002), Neurotechnology for Biomimetic Robots, MIT Press, Cambridge, MA
  4. Ayers, J. and Rulkov, N. (2007), "Controlling biomimetic underwater robots with electronic nervous systems", Bio-mechanisms of Animals in Swimming and Flying. N. Kato and S. Kamimura. Tokyo, Springer-Verlag: 295-306.
  5. Ayers, J., Rulkov, N, Brady, D., Hunt, M. and Westphal, A. (2008), "Controlling a lamprey-based robot with an electronic nervous system", Abs. Soc. Neurosci, 376, 21.
  6. Ayers, J., Rulkov, N., Knudsen, D., Kim, Y.-B., Volkovskii, A. and Selverston, A.I. (2010), "Controlling underwater robots with electronic nervous systems", Appl. Bio. Biomech, 7(1), 57-67. https://doi.org/10.1080/11762320903244843
  7. Ayers, J. and Witting, J. (2007), "Biomimetic approaches to the control of underwater walking machines", Phil. T. R. Soc. A, 365, 273-295. https://doi.org/10.1098/rsta.2006.1910
  8. Bi, G.Q. and Poo, M.M. (2001), "Synaptic modification by correlated activity: Hebb's postulate revisited", Annu. Rev. Neurosci., 24, 139-166. https://doi.org/10.1146/annurev.neuro.24.1.139
  9. Brooks, R.A.A. (1986), "Robust layered control system for a mobile robot", Int. J. Robot. Autom., 2, 14-23. https://doi.org/10.1109/JRA.1986.1087032
  10. Brooks, R.A. (1991), "New Approaches to Robotics", Science, 253(5025), 1227-1232. https://doi.org/10.1126/science.253.5025.1227
  11. Buchanan, J.T. and Grillner, S. (1987), "Newly identified 'glutamate interneurons' and their role in locomotion in the lamprey spinal cord", Science, 236(4799), 312-314. https://doi.org/10.1126/science.3563512
  12. Ekeberg, O. and Grillner, S. (1999), "Simulations of neuromuscular control in lamprey swimming", Philos T. R. Soc. B, 354(1385), 895-902. https://doi.org/10.1098/rstb.1999.0441
  13. Hammarlund, P. and Ekeberg, O. (1998), "Large neural network simulations on multiple hardware platforms", J Comput Neurosci, 5(4), 443-59. https://doi.org/10.1023/A:1008893429695
  14. Harris-Warrick, R.M. (2002), "Voltage-sensitive ion channels in rhythmic motor systems", Curr. Opin. Neurobiol., 12(6), 646-651. https://doi.org/10.1016/S0959-4388(02)00377-X
  15. Harris-Warrick, R.M. and Marder, E. (1991), "Modulation of neural networks for behavior", Annu. Rev Neurosci, 14, 39-57. https://doi.org/10.1146/annurev.ne.14.030191.000351
  16. Hawat, R. (2008), "Hardware and Software Implementation of a Passive Ultra-short Baseline Array Sonar", Electrical Engineering, Boston, Northeastern University, Masters.
  17. Katz, P.S. and Harris-Warrick, R.M. (1999), "The evolution of neuronal circuits underlying species-specific behavior", Curr. Opin. Neurobiol., 9(5), 628-633. https://doi.org/10.1016/S0959-4388(99)00012-4
  18. Lewis, M.A., Etienne-Cummings, R., Hartmann, M.J., Xu, Z.R. and Cohen, A.H. (2003), "An in silico central pattern generator: silicon oscillator, coupling, entrainment, and physical computation", Biol. Cybern., 88(2), 137-51. https://doi.org/10.1007/s00422-002-0365-7
  19. Pinto, R.D., Varona, P., Volkovskii, A.R., Szucs, A., Abarbanel, H.D.I. and Rabinovich, M.I. (2000), "Synchronous behavior of two coupled electronic neurons", Physical review E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 62(2 Pt B), 2644-2656. https://doi.org/10.1103/PhysRevE.62.2644
  20. Rabinovich, M.I., Varona, P., Selverston, A.I. and Abarbanel, H.D.I. (2006), "Dynamical principles in neuroscience", Rev. Mod. Phys., 78, 1213-1265. https://doi.org/10.1103/RevModPhys.78.1213
  21. Reeve, R. and Webb, B.H. (2003), "New neural circuits for robot phonotaxis", Phil. T. R. Soc. A, 361, 2245-2266. https://doi.org/10.1098/rsta.2003.1274
  22. Rulkov, N.F. (2002), "Modeling of spiking-bursting neural behavior using two-dimensional map", Phys. Rev. E, 65(4), 041922. https://doi.org/10.1103/PhysRevE.65.041922
  23. Rulkov, N.F., Timofeev, I. and Bazhenov, M. (2004), "Oscillations in large-scale cortical networks: map-based model", J. Comput. Neurosci., 17(2), 203-223. https://doi.org/10.1023/B:JCNS.0000037683.55688.7e
  24. Shilnikov, A.L. and Rulkov, N.F. (2003), "Origin of chaos in a two-dimensional map modeling spiking-bursting neural activity", Int. J. Bifurcat. Chaos, 13(11), 3325-40. https://doi.org/10.1142/S0218127403008521
  25. Stuart, D.G. and Enoka, R. (1985), "A review of Henneman's size principle: critical issues", in The Motor System In Neurobiology, ed. Evarts, E.V., Wise, S.P. and Bousfield, D., 30-35, Elsevier Biomedical Press.
  26. Stein, P.S.G., Grillner, S., Selverston, A.I. and Stuart, D. (1997), Neurons, Networks and Motor Behavior (Eds. Sejnowski, T. and Poggio), T., MIT Press, Cambridge, MA.
  27. Taubes, G. (2000), "Biologists and engineers create a new generation of robots that imitate life", Science, 288(5463), 80-83. https://doi.org/10.1126/science.288.5463.80

Cited by

  1. Mergeable nervous systems for robots vol.8, pp.1, 2017, https://doi.org/10.1038/s41467-017-00109-2
  2. Emergence of antiphase bursting in two populations of randomly spiking elements vol.88, pp.4, 2013, https://doi.org/10.1103/PhysRevE.88.042907
  3. Control of Sampling Rate in Map-Based Models of Spiking Neurons 2018, https://doi.org/10.1016/j.cnsns.2018.01.021
  4. Optimization of the efficiency of a biomimetic marine propulsor using CFD vol.34, pp.1, 2014, https://doi.org/10.15446/ing.investig.v34n1.42793
  5. Fundamentals of soft robot locomotion vol.14, pp.130, 2017, https://doi.org/10.1098/rsif.2017.0101
  6. A nitric oxide sensor fabricated through e-jet printing towards use in bioelectronics interfaces pp.1572-8838, 2018, https://doi.org/10.1007/s10800-018-1269-0
  7. Large time step discrete-time modeling of sharp wave activity in hippocampal area CA3 vol.72, pp.None, 2011, https://doi.org/10.1016/j.cnsns.2018.12.009
  8. Body Wave Generation for Anguilliform Locomotion Using a Fiber-Reinforced Soft Fluidic Elastomer Actuator Array Toward the Development of the Eel-Inspired Underwater Soft Robot vol.7, pp.2, 2020, https://doi.org/10.1089/soro.2019.0054
  9. Design and development of the efficient anguilliform swimming robot- MAR vol.15, pp.3, 2011, https://doi.org/10.1088/1748-3190/ab6be0
  10. Hydrodynamics of Biomimetic Marine Propulsion and Trends in Computational Simulations vol.8, pp.7, 2011, https://doi.org/10.3390/jmse8070479
  11. Soft Mobile Robots: a Review of Soft Robotic Locomotion Modes vol.2, pp.4, 2021, https://doi.org/10.1007/s43154-021-00070-5