DOI QR코드

DOI QR Code

Hybrid acceleration-impedance sensor nodes on Imote2-platform for damage monitoring in steel girder connections

  • Kim, Jeong-Tae (Department of Ocean Eng., Pukyong National University) ;
  • Park, Jae-Hyung (Department of Ocean Eng., Pukyong National University) ;
  • Hong, Dong-Soo (Department of Ocean Eng., Pukyong National University) ;
  • Ho, Duc-Duy (Department of Ocean Eng., Pukyong National University)
  • 투고 : 2010.10.18
  • 심사 : 2011.04.13
  • 발행 : 2011.05.25

초록

Hybrid acceleration-impedance sensor nodes on Imote2-platform are designed for damage monitoring in steel girder connections. Thus, the feasibility of the sensor nodes is examined about its performance for vibration-based global monitoring and impedance-based local monitoring in the structural systems. To achieve the objective, the following approaches are implemented. First, a damage monitoring scheme is described in parallel with global vibration-based methods and local impedance-based methods. Second, multi-scale sensor nodes that enable combined acceleration-impedance monitoring are described on the design of hardware components and embedded software to operate. Third, the performances of the multi-scale sensor nodes are experimentally evaluated from damage monitoring in a lab-scaled steel girder with bolted connection joints.

키워드

과제정보

연구 과제 주관 기관 : Korea Research Foundation

참고문헌

  1. Analog Devices (2010), "Datasheet of AD5933", Available from .
  2. Bendat, J.S. and Piersol, A.G. (2003), "Engineering applications of correlation and spectral analysis", Wiley-Interscience, New York, NY.
  3. Bhalla, S. and Soh, C.K. (2004), "Structural health monitoring by piezo-impedance trans-ducers ii: applications", J. Aerospace. Eng., 17(4), 166-175. https://doi.org/10.1061/(ASCE)0893-1321(2004)17:4(166)
  4. Brincker, R., Zhang, L. and Andersen, P. (2001), "Modal identification of output-only systems using frequency domain decomposition", Smart Mater. Struct., 10(3), 441-445. https://doi.org/10.1088/0964-1726/10/3/303
  5. Cho, S., Yun, C.B., Lynch, J.P., Zimmerman, A.T., Spencer, B.F. and Nagayama, T. (2008), "Smart wireless sensor technology for structural health monitoring of civil structures", Steel Struct., 8, 267-275.
  6. Fasel, T.R., Sohn, H., Park, G. and Farrar, C.R. (2005), "Active sensing using impedancebased ARX models and extreme value statistics for damage detection", Earthq. Eng. Struct. D., 34(7), 763-785. https://doi.org/10.1002/eqe.454
  7. Giurgiutiu, V. and Zagrai, A.N. (2002), "Embedded self-sensing piezoelectric active sensors for on-line structural identification", J. Vib. Acoust., 124(1), 116-125. https://doi.org/10.1115/1.1421056
  8. Illinois Structural Health Monitoring Project (2010), Available from:
  9. Kim, J.T. and Stubbs, N. (1995), "Model uncertainty impact and damage-detection accuracy in plate girder", J. Struct. Eng., 121(10), 1409-1417. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:10(1409)
  10. Kim, J.T., Ryu, Y.S., Cho, H.M. and Stubbs, N. (2003), "Damage identification in beamtype structures: frequencybased method vs modeshapebased method", Eng. Struct., 25(1), 57-67. https://doi.org/10.1016/S0141-0296(02)00118-9
  11. Kim, J.T., Na, W.B., Hong, D.S. and Park, J.H. (2006a), "Global and local health monitoring of plate-girder bridges under uncertain temperature conditions", Steel Struct., 6, 369-376.
  12. Kim, J.T., Na, W.B., Park, J.H. and Hong, D.S. (2006b), "Hybrid health monitoring of structural joints using modal parameters and EMI signatures", Proceedings of the SPIE. 6174, San Diego.
  13. Kim, J.T., Park, J.H., Hong, D.S., Cho, H.M., Na, W.B. and Yi., J.H. (2009), "Vibration and impedance monitoring for prestressloss prediction in PSC girder bridges", Smart Struct. Syst., 5(1), 81-94. https://doi.org/10.12989/sss.2009.5.1.081
  14. Koo, K.Y. (2008), "Structural health monitoring methods for bridges using ambient vibration and impedance measurements", Ph.D. Dissertation, Korea Advanced Institute of Science and Technology, Daejon, Korea.
  15. Krishnamurthy, V., Fowler, K. and Sazonov, E. (2008), "The effect of time synchronization of wireless sensors on the modal analysis of structures", Smart Mater. Struct., 17(5), 1-13.
  16. Kurata, N., Spencer, B.F. and RuizSandoval M. (2005), "Risk monitoring of buildings with wireless sensor networks", Struct. Control Health Monit., 12(3-4), 315-327. https://doi.org/10.1002/stc.73
  17. Kyung, G.S., Lee, J.S., Choi, I.Y. and Hong, S.U. (2002), "Classification and analysis: deteriorations of Korean steel plate girder bridges", Proc. Korean Soc. Stl. Const., 32-40.
  18. Lam, H.F., Ko, J.M. and Wong, C.W. (1998), "Localization of damaged structural connections based on experimental modal and sensitivity analysis", J. Sound. Vib., 210(1), 91-115. https://doi.org/10.1006/jsvi.1997.1302
  19. Levis, P and Gay, D. (2009, TinyOS Programming, Cambridge University Press, New York.
  20. Liang, C., Sun, F.P. and Rogers, C.A. (1996), "Electro-mechanical impedance modeling of active material systems", Smart Mater. Struct., 5(2), 171-186. https://doi.org/10.1088/0964-1726/5/2/006
  21. Lynch, J.P., Law, K.H., Kiremidjian, A.S., Carryer. E., Farrar, C.R., Sohn, H., Allen, D.W., Nadler, B. and Wait, J.R. (2004), "Design and performance validation of a wireless sensing unit for structural monitoring applications", Struct. Eng. Mech., 17(34), 393-408. https://doi.org/10.12989/sem.2004.17.3_4.393
  22. Lynch J.P., Wang, W., Loh, K.J., Yi, J.H. and Yun, C.B. (2006), "Performance monitoring of the geumdang bridge using a dense network of highresolution wireless sensors", Smart Mater. Struct., 15(6), 1561-1575. https://doi.org/10.1088/0964-1726/15/6/008
  23. Mascarenas, D.L., Todd, M.D., Park, G. and Farrar, C.R., (2007), "Development of an impedancebased wireless sensor node for structural health monitoring", Smart Mater. Struct., 16(6), 2137-2145. https://doi.org/10.1088/0964-1726/16/6/016
  24. Mascarenas, D.L., Park, G., Farinholt, K.M., Todd, M.D. and Farrar, C.R. (2009), "A low-power wireless sensing device for remote inspection of bolted joints", J. Aerospace Eng., 233(5), 565-575.
  25. Memsic Co. (2010), "Datasheet of ISM400", Available from: .
  26. Nagayama, T. (2007), "Structural health monitoring using smart sensors", Ph.D Dissertation, University of Illinois at Urbana-Champaign, UC, USA.
  27. Nagayama, T., Sim, S.H., Miyamori, Y. and Spencer, B.F. (2007,) "Issues in structural health monitoring employing smart sensors", Smart Struct. Syst., 3(3), 299-320. https://doi.org/10.12989/sss.2007.3.3.299
  28. Nagayama, T., Spencer, B.F. and Rice, J.A. (2009), "Autonomous decentralized structural health monitoring using smart sensors", Struct. Control Health Monit., 16(7-8), 842-859.
  29. Park, J.H., Kim, J.T., Hong, D.S., Mascarenas, D. and Lynch, J.P. (2010), "Autonomous smart sensor nodes for global and local damage detection of prestressed concrete bridges based on accelerations and impedance measurements", Smart Struct. Syst., 6(56), 711-730. https://doi.org/10.12989/sss.2010.6.5_6.711
  30. Park, S., Yun, C.B., Roh. Y. and Lee, J. (2005), "Health monitoring of steel structures using impedance of thickness modes at PZT patches", Smart Struct. Syst., 1(4), 339-353. https://doi.org/10.12989/sss.2005.1.4.339
  31. Park, G., Farrar, C.R., Scalea, F.L. and Coccia, S. (2006), "Performance assessment and validation of piezoelectric active-sensors in structural health monitoring", Smart Mater. Struct., 15(6), 1673-1683. https://doi.org/10.1088/0964-1726/15/6/020
  32. Rice, J.A. and Spencer, B.F. (2008), "Structural health monitoring sensor development for the imote2 platform", Proceedings of the SPIE, 6932, San Diego.
  33. Rice, J.A., Mechitov, K., Sim, S.H., Nagayama, T., Jang, S., Kim, R., Spencer, B.F., Agha, G.A. and Fujino, Y. (2010), "Flexible smart sensor framework for autonomous structural health monitoring", Smart Struct. Syst., 6(56), 423-438. https://doi.org/10.12989/sss.2010.6.5_6.423
  34. Roh, Y., Kim, D.Y., Yang, S.H., Park, S. and Yun, C.B. (2005), "PZT-induced lamb waves and pattern recognitions for online health monitoring of joint steel plates", Key Eng. Mater., 321-323, 146-151.
  35. Sazonov, E., Jha, R., Janoyan, K., Krishnamurthy, V., Fuchs, M. and Cross, K. (2006), "Wireless intelligent sensor and actuator network (WISAN): a scalable ultralowpower platform for structural health monitoring", Proceedings of the SPIE, 6177, San Diego.
  36. SHMA User Guide (2010), Available from: .
  37. Sim, S.H. and Spencer, B.F. (2007), "Multiscale sensing for structural health monitoring", Proceedings of the World Forum on Smart Material and Smart Structure Technology, Chongqing & Nanjing, China.
  38. Sohn, H., Farrar, C.R., Hunter, N.F. and Worden, K. (2001), "Structural health monitoring using statistical pattern recognition techniques", J. Dyn. Syst. Meas. Control,, 123(4), 706-711. https://doi.org/10.1115/1.1410933
  39. Sohn, H., Farrar, C.R., Hemez, F.M., Shunk, D.D., Stinemates, D.W. and Nadler, B.R. (2003), "A review of structural health monitoring literature: 1996-2001", Los Alamos National Laboratory Report, LA-13976-MS, Los Alamos, NM.
  40. Spencer, B.F., RuizSandoval, M.E. and Kurata, N. (2004), "Smart sensing technology: opportunities and challenges", Struct. Control Health Monit., 11(4), 349-368 https://doi.org/10.1002/stc.48
  41. Straser, E.G. and Kiremidjian, A.S. (1998), "A modular, wireless damage monitoring system for structure", Technical Report 128, John A. Blume Earthquake Engineering Center, Stanford University, Stanford, CA.
  42. Studer, M. and Peters, K. (2004), "Multiscale sensing for damage identification", Smart Mater. Struct., 13(2), 283-294. https://doi.org/10.1088/0964-1726/13/2/006
  43. Sun, F.P., Chaudhry, Z.A., Rogers, C.A., Majmundar, M., and Liang, C. (1995). "Automated real-time structure health monitoring via signature pattern recognition", Proceeding of the SPIE Conference on Smart Structures and Materials, San Diego, USA.
  44. Taylor, S.G., Farinholt, K.M., Flynn, E.B., Figueiredo, E., Mascarenas, D.L., Park, G., Todd, M.D., Farrar, C.R. (2009), "A mobileagent based wireless sensing network for structural monitoring applications", Meas. Sci. Technol., 20(4), 1-14.
  45. Weng, J.H., Loh, C.H., Lynch, J.P., Lu, K.C., Lin, P.Y. and Wang, Y. (2008), "Outputonly modal identification of a cablestayed bridge using wireless monitoring systems", Eng. Struct., 30(7), 1820-1830. https://doi.org/10.1016/j.engstruct.2007.12.002
  46. Yi, J.H. and Yun, C.B. (2004), "Comparative study on modal identification methods using output-only information", Struct. Eng. Mech., 17(3-4), 445-446. https://doi.org/10.12989/sem.2004.17.3_4.445
  47. Yun, C.B., Yi, J.H. and Bahng, E.Y. (2001), "Joint damage assessment of framed structures using neural networks technique", Eng. Struct., 23(5), 425-435. https://doi.org/10.1016/S0141-0296(00)00067-5
  48. Zimmerman, A.T., Shiraishi, M., Swartz, R.A. and Lynch, J.P. (2008), "Automated modal parameter estimation by parallel processing within wireless monitoring systems", J. Infrastruct. Syst., 14(1), 102-113. https://doi.org/10.1061/(ASCE)1076-0342(2008)14:1(102)

피인용 문헌

  1. Traffic Safety Evaluation for Railway Bridges Using Expanded Multisensor Data Fusion vol.31, pp.10, 2016, https://doi.org/10.1111/mice.12210
  2. Wireless health monitoring of stay cable using piezoelectric strain response and smart skin technique vol.12, pp.3_4, 2013, https://doi.org/10.12989/sss.2013.12.3_4.381
  3. Recent R&D activities on structural health monitoring in Korea vol.3, pp.1, 2016, https://doi.org/10.12989/smm.2016.3.1.091
  4. Development of a Multitype Wireless Sensor Network for the Large-Scale Structure of the National Stadium in China vol.9, pp.12, 2013, https://doi.org/10.1155/2013/709724
  5. Temperature effect on wireless impedance monitoring in tendon anchorage of prestressed concrete girder vol.15, pp.4, 2015, https://doi.org/10.12989/sss.2015.15.4.1159
  6. Multiscale Acceleration-Dynamic Strain-Impedance Sensor System for Structural Health Monitoring vol.8, pp.10, 2012, https://doi.org/10.1155/2012/709208
  7. Long-Term Vibration Monitoring of Cable-Stayed Bridge Using Wireless Sensor Network vol.9, pp.11, 2013, https://doi.org/10.1155/2013/804516
  8. Vibration-Based Monitoring of Stay-Cable Force Using Wireless Piezoelectric-Based Strain Sensor Nodes vol.32, pp.6, 2012, https://doi.org/10.7779/JKSNT.2012.32.6.669
  9. Temperature-Compensated Damage Monitoring by Using Wireless Acceleration-Impedance Sensor Nodes in Steel Girder Connection vol.8, pp.9, 2012, https://doi.org/10.1155/2012/167120
  10. Development of a Customized Wireless Sensor System for Large-Scale Spatial Structures and Its Applications in Two Cases vol.16, pp.04, 2016, https://doi.org/10.1142/S0219455416400174
  11. Wind and traffic-induced variation of dynamic characteristics of a cable-stayed bridge - benchmark study vol.17, pp.3, 2016, https://doi.org/10.12989/sss.2016.17.3.491
  12. Wireless structural health monitoring of stay cables under two consecutive typhoons vol.1, pp.1, 2014, https://doi.org/10.12989/smm.2014.1.1.047
  13. Optimal Sensor Placement for Stay Cable Damage Identification of Cable-Stayed Bridge under Uncertainty vol.9, pp.12, 2013, https://doi.org/10.1155/2013/361594
  14. Temperature Effect on Impedance-based Damage Monitoring of Steel-Bolt Connection using Wireless Impedance Sensor Node vol.26, pp.1, 2012, https://doi.org/10.5574/KSOE.2012.26.1.027
  15. Vision-based technique for bolt-loosening detection in wind turbine tower vol.21, pp.6, 2015, https://doi.org/10.12989/was.2015.21.6.709
  16. Structural identification of cable-stayed bridge under back-to-back typhoons by wireless vibration monitoring vol.88, 2016, https://doi.org/10.1016/j.measurement.2016.03.032
  17. Wireless monitoring of typhoon-induced variation of dynamic characteristics of a cable-stayed bridge vol.20, pp.2, 2015, https://doi.org/10.12989/was.2015.20.2.293
  18. Modal Strain Energy-based Damage Monitoring in Beam Structures using PZT's Direct Piezoelectric Response vol.25, pp.1, 2012, https://doi.org/10.7734/COSEIK.2012.25.1.091
  19. Solar-powered multi-scale sensor node on Imote2 platform for hybrid SHM in cable-stayed bridge vol.9, pp.2, 2011, https://doi.org/10.12989/sss.2012.9.2.145
  20. Hybrid bolt-loosening detection in wind turbine tower structures by vibration and impedance responses vol.24, pp.4, 2011, https://doi.org/10.12989/was.2017.24.4.385
  21. Advances and challenges in impedance-based structural health monitoring vol.4, pp.4, 2011, https://doi.org/10.12989/smm.2017.4.4.301
  22. Preload Monitoring in Bolted Connection Using Piezoelectric-Based Smart Interface vol.18, pp.9, 2011, https://doi.org/10.3390/s18092766
  23. Determining Structural Resonance Frequency via Low-Cost Micro-Electromechanical Systems vol.43, pp.suppl1, 2011, https://doi.org/10.1007/s40996-018-0188-y
  24. Fault Detection Method of Bolt-joint Using Acceleration and Impedance vol.20, pp.1, 2011, https://doi.org/10.9798/kosham.2020.20.1.1