DOI QR코드

DOI QR Code

Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering

  • Coburn, Jeannine (Department of Biomedical Engineering, Johns Hopkins University) ;
  • Gibson, Matt (Department of Biomedical Engineering, Johns Hopkins University) ;
  • Bandalini, Pierre Alain (Ecole Polytechnique) ;
  • Laird, Christopher (Department of Biomedical Engineering, Johns Hopkins University) ;
  • Mao, Hai-Quan (Department of Materials Science and Engineering, Johns Hopkins University) ;
  • Moroni, Lorenzo (Department of Biomedical Engineering, Johns Hopkins University) ;
  • Seliktar, Dror (Faculty of Biomedical Engineering, Technion - Israel Institute of Technology) ;
  • Elisseeff, Jennifer (Department of Biomedical Engineering, Johns Hopkins University)
  • Received : 2010.10.22
  • Accepted : 2010.10.29
  • Published : 2011.03.25

Abstract

The native extracellular matrix (ECM) consists of an integrated fibrous protein network and proteoglycan-based ground (hydrogel) substance. We designed a novel electrospinning technique to engineer a three dimensional fiber-hydrogel composite that mimics the native ECM structure, is injectable, and has practical macroscale dimensions for clinically relevant tissue defects. In a model system of articular cartilage tissue engineering, the fiber-hydrogel composites enhanced the biological response of adult stem cells, with dynamic mechanical stimulation resulting in near native levels of extracellular matrix. This technology platform was expanded through structural and biochemical modification of the fibers including hydrophilic fibers containing chondroitin sulfate, a significant component of endogenous tissues, and hydrophobic fibers containing ECM microparticles.

Keywords

References

  1. Awad, H.A., Wickham, M.Q., Leddy, H.A., Gimble, J.M. and Guilak, F. (2004), "Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds", Biomaterials 25(16), 3211-3222. https://doi.org/10.1016/j.biomaterials.2003.10.045
  2. Chiara, G. and Ranieri, C. (2009), "Cartilage and bone extracellular matrix", Curr. Pharm. Design, 15(12), 1334- 1348. https://doi.org/10.2174/138161209787846739
  3. Engler, A.J., Sen, S., Sweeney, H.L. and Discher, D.E. (2006), "Matrix elasticity directs stem cell lineage specification", Cell, 126(4), 677-689. https://doi.org/10.1016/j.cell.2006.06.044
  4. Farndale, R.W., Buttle, D.J. and Barrett, A.J. (1986), "Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue", Biochim. Biophys. Acta. Gen. Sub., 883(2),173-177. https://doi.org/10.1016/0304-4165(86)90306-5
  5. Gong, J.P., Katsuyama, Y., Kurokawa, T. and Osada, Y. (2003), "Double-network hydrogels with extremely high mechanical strength", Adv. Mater., 15(14), 1155-1158. https://doi.org/10.1002/adma.200304907
  6. Gregory, S.S. and Annette, W. (2009), "Interactions between extracellular matrix and growth factors in wound healing", Wound Repair Regen., 17(2), 153-162. https://doi.org/10.1111/j.1524-475X.2009.00466.x
  7. Hannouche, D., Terai, H., Fuchs, J.R., Terada, S., Zand, S., Nasseri, B.A., Petite, H., Sedel, L. and Vacanti, J.P. (2007), "Engineering of implantable cartilaginous structures from bone marrow-derived mesenchymal stem cells", Tissue Eng., 13(1), 87-99. https://doi.org/10.1089/ten.2006.0067
  8. Janna, K.M., John, T.C., Christopher, G.W., Kristin, E.M. and Marc, E.L. (2007), "Dynamic compression regulates the expression and synthesis of chondrocyte-specific matrix molecules in bone marrow stromal cells", Stem Cells, 25(3), 655-663.
  9. Kim, Y.-J., Sah, R.L.Y., Doong, J.Y.H. and Grodzinsky, A.J. (1988), "Fluorometric assay of DNA in cartilage explants using Hoechst 33258", Anal. Biochem., 174(1), 168-176. https://doi.org/10.1016/0003-2697(88)90532-5
  10. Lee, H.J., Yu, C., Chansakul, T., Hwang, N.S., Varghese, S., Yu, S.M. and Elisseeff, J.H. (2008), "Enhanced chondrogenesis of mesenchymal stem cells in collagen mimetic peptide-mediated microenvironment", Tissue Eng., 14(11), 1843-1851. https://doi.org/10.1089/ten.tea.2007.0204
  11. Li, Q., Wang, D.A. and Elisseeff, J.H. (2003), "Heterogeneous-phase reaction of glycidyl methacrylate and chondroitin sulfate: Mechanism of ring-opening-transesterification Competition", Macromolecules, 36(7), 2556-2562. https://doi.org/10.1021/ma021190w
  12. Li, W., Cooper, J.A., Mauck, R.L. and Tuan, R.S. (2006), "Fabrication and characterization of six electrospun poly(a-hydroxy ester)-based fibrous scaffolds for tissue engineering applications", Acta Biomater., 2(4), 377-385. https://doi.org/10.1016/j.actbio.2006.02.005
  13. Marijnissen, W.J., van Osch, G.J., Aigner, J., van der Veen, S.W., Hollander, A.P., Verwoerd-Verhoef, H.L. and Verhaar, J.A. (2002), "Alginate as a chondrocyte-delivery substance in combination with a non-woven scaffold for cartilage tissue engineering", Biomaterials, 23(6), 1511-1517. https://doi.org/10.1016/S0142-9612(01)00281-2
  14. Martens, P. and Anseth, K.S. (2000), "Characterization of hydrogels formed from acrylate modified poly(vinyl alcohol) macromers", Polymer, 41(21), 7715-7722. https://doi.org/10.1016/S0032-3861(00)00123-3
  15. Moutos, F.T., Freed, L.E. and Guilak, F. (2007), "A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage", Nat. Mater., 6(2), 162-167. https://doi.org/10.1038/nmat1822
  16. Moutos, F.T. and Guilak, F. (2010), "Functional properties of cell-seeded three-dimensionally woven poly( $\varepsilon$ - caprolactone) scaffolds for cartilage tissue engineering", Tissue Eng., 16(4), 1291-1301. https://doi.org/10.1089/ten.tea.2009.0480
  17. Mow, V.C., Ratcliffe, A. and Poole, A.R. (1992), "Carilage and diarthrodial joints as paradigms for hierarchical materials and structures", Biomaterials, 13(2), 67-97. https://doi.org/10.1016/0142-9612(92)90001-5
  18. Nakayama, A., Kakugo, A., Gong, J.P., Osada, Y., Takai, M., Erata T. and Kawano, S. (2004), "High mechanical strength double-network hydrogel with bacterial cellulose", Adv. Funct. Mater., 14(11), 1124-1128. https://doi.org/10.1002/adfm.200305197
  19. Place, E.S., Evans, N.D. and Stevens, M.M. (2009), "Complexity in biomaterials for tissue engineering", Nat. Mater., 8(6), 457-470. https://doi.org/10.1038/nmat2441
  20. Ramadoss, P. and Nagamani, K. (2009), "Behavior of high-strength fiber reinforced concrete plates under inplane and transverse loads", Struct. Eng. Mech., 31(4), 371-382. https://doi.org/10.12989/sem.2009.31.4.371
  21. Schmidt, O., Mizrahi, J., Elisseeff, J. and Seliktar, D. (2006), "Immobilized fibrinogen in PEG hydrogels does not improve chondrocyte-mediated matrix deposition in response to mechanical stimulation", Biotechnol. Bioeng., 95(6), 1061-1069. https://doi.org/10.1002/bit.21072
  22. Segawa, K. and Takiguchi, R. (1992), "Ultrastructural alteration of cartilaginous fibril arrangement in the rat mandibular condyle as revealed by high-resolution scanning electron microscopy", Anat. Rec., 234(4), 493-499. https://doi.org/10.1002/ar.1092340405
  23. Slivka, M.A., Leatherbury, N.C., Kieswetter, K. and Niederauer, G.G. (2001), "Porous, resorbable, fiberreinforced scaffolds tailored for articular cartilage repair", Tissue Eng., 7(6), 767-780. https://doi.org/10.1089/107632701753337717
  24. Strehin, I., Winnette McIntosh, A., Oliver, S., Afrah, S. and Elisseeff, J. H. (2009), "Synthesis and characterization of a chondroitin sulfate-polyethylene glycol corneal adhesive", J. Cataract Refr. Surg., 35(3), 567-576. https://doi.org/10.1016/j.jcrs.2008.11.035
  25. Tsang, K., Cheung, M., Chan, D. and Cheah, K. (2010), "The developmental roles of the extracellular matrix: beyond structure to regulation", Cell Tissue Res., 339(1), 93-110. https://doi.org/10.1007/s00441-009-0893-8
  26. Tzezana, R., Zussman, E. and Levenberg, S. (2008), "A layered ultra-porous scaffold for tissue engineering, created via a hydrospinning method", Tissue Eng., 14(4), 281-288. https://doi.org/10.1089/ten.tec.2008.0201
  27. Vanessa, T., Nathaniel, H., Lorenzo, M., Hyung, B.P., Zijun, Z., Joseph, M., Dror, S. and Jennifer, E. (2007), "Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels", Stem Cells, 25(11), 2730-2738. https://doi.org/10.1634/stemcells.2007-0228
  28. Varghese, S., Hwang, N.S., Canver, A.C., Theprungsirikul, P., Lin, D.W. and Elisseeff, J. (2008), "Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells", Matrix Biol., 27(1), 12-21. https://doi.org/10.1016/j.matbio.2007.07.002
  29. Wagenseil, J.E. and Mecham, R.P. (2009), "Vascular extracellular matrix and arterial mechanics", Physiol. Rev., 89(3), 957-989. https://doi.org/10.1152/physrev.00041.2008
  30. Williams, C.G., Kim, T.K., Taboas, A., Malik, A., Manson, P. and Elisseeff, J. (2003), "In Vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel", Tissue Eng., 9(4), 679-688. https://doi.org/10.1089/107632703768247377
  31. Williams, E.M., Graham, S.S., Akers, S.A., Reed, P.A. and Rushing, T.S. (2010), "Constitutive property behavior of an untra-high-performance concrete with and without steel fibers", Comput.Concrete, 7(2), 191-202. https://doi.org/10.12989/cac.2010.7.2.191
  32. Winer, J.P., Janmey, P.A., McCormick, M.E. and Funaki, M. (2009), "Bone marrow-derived human mesenchymal stem cells become quiescent on soft substrates but remain responsive to chemical or mechanical stimuli", Tissue Eng., 15(1), 147-154. https://doi.org/10.1089/ten.tea.2007.0388
  33. Woodfield, T.B.F., Malda, J., de Wijn, J., Péters, F., Riesle, J. and van Blitterswijk, C.A. (2004), "Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique", Biomaterials, 25(18), 4149-4161. https://doi.org/10.1016/j.biomaterials.2003.10.056
  34. Yang, F., Williams, C.G., Wang, D.A., Lee, H., Manson, P.N. and Elisseeff, J. (2005), "The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells", Biomaterials, 26(30), 5991-5998. https://doi.org/10.1016/j.biomaterials.2005.03.018

Cited by

  1. Nanofibrous hydrogel composites as mechanically robust tissue engineering scaffolds vol.32, pp.11, 2014, https://doi.org/10.1016/j.tibtech.2014.09.001
  2. Composites of electrospun-fibers and hydrogels: A potential solution to current challenges in biological and biomedical field vol.104, pp.3, 2016, https://doi.org/10.1002/jbm.b.33420
  3. Cell infiltration into a 3D electrospun fiber and hydrogel hybrid scaffold implanted in the brain vol.5, pp.1, 2015, https://doi.org/10.1080/21592535.2015.1005527
  4. Promoting chondrocyte cell clustering through tuning of a poly(ethylene glycol)-poly(peptide) thermosensitive hydrogel with distinctive microarchitecture vol.76, 2017, https://doi.org/10.1016/j.msec.2017.02.130
  5. Use of Magnetic Forces to Promote Stem Cell Aggregation During Differentiation, and Cartilage Tissue Modeling vol.25, pp.18, 2013, https://doi.org/10.1002/adma.201300342
  6. PLA short sub-micron fiber reinforcement of 3D bioprinted alginate constructs for cartilage regeneration vol.9, pp.4, 2017, https://doi.org/10.1088/1758-5090/aa90d7
  7. Hydrogel Composites Containing Carbon Nanobrushes as Tissue Scaffolds vol.1498, 2013, https://doi.org/10.1557/opl.2013.11
  8. Wet Spinning and Drawing of Human Recombinant Collagen vol.2, pp.3, 2016, https://doi.org/10.1021/acsbiomaterials.5b00461
  9. Leveraging “Raw Materials” as Building Blocks and Bioactive Signals in Regenerative Medicine vol.18, pp.5, 2012, https://doi.org/10.1089/ten.teb.2012.0080
  10. A Bioinspired Ultraporous Nanofiber-Hydrogel Mimic of the Cartilage Extracellular Matrix vol.5, pp.24, 2016, https://doi.org/10.1002/adhm.201600867
  11. Bioengineering of articular cartilage: past, present and future vol.8, pp.3, 2013, https://doi.org/10.2217/rme.13.28
  12. Bioinspired nanofibers support chondrogenesis for articular cartilage repair vol.109, pp.25, 2012, https://doi.org/10.1073/pnas.1121605109
  13. Biomaterial microarchitecture: a potent regulator of individual cell behavior and multicellular organization vol.105, pp.2, 2017, https://doi.org/10.1002/jbm.a.35914
  14. Preparation of animal polysaccharides nanofibers by electrospinning and their potential biomedical applications vol.103, pp.2, 2015, https://doi.org/10.1002/jbm.a.35187
  15. Hydrogel Composite Materials for Tissue Engineering Scaffolds vol.65, pp.4, 2013, https://doi.org/10.1007/s11837-013-0575-6
  16. 25th Anniversary Article: Engineering Hydrogels for Biofabrication vol.25, pp.36, 2013, https://doi.org/10.1002/adma.201302042
  17. Reinforcement of hydrogels using three-dimensionally printed microfibres vol.6, pp.1, 2015, https://doi.org/10.1038/ncomms7933
  18. Integrated three-dimensional fiber/hydrogel biphasic scaffolds for periodontal bone tissue engineering vol.65, pp.6, 2016, https://doi.org/10.1002/pi.5101
  19. Biomimetic fiber assembled gradient hydrogel to engineer glycosaminoglycan enriched and mineralized cartilage: Anin vitrostudy vol.103, pp.12, 2015, https://doi.org/10.1002/jbm.a.35506
  20. Stem cell-based therapies for osteoarthritis vol.25, pp.1, 2013, https://doi.org/10.1097/BOR.0b013e32835aa28d
  21. Wet-laid soy fiber reinforced hydrogel scaffold: Fabrication, mechano-morphological and cell studies vol.63, 2016, https://doi.org/10.1016/j.msec.2016.02.078
  22. The Good the Bad and the Ugly of Glycosaminoglycans in Tissue Engineering Applications vol.10, pp.2, 2017, https://doi.org/10.3390/ph10020054
  23. From intricate to integrated: Biofabrication of articulating joints vol.35, pp.10, 2017, https://doi.org/10.1002/jor.23602
  24. Tissue engineering strategies to study cartilage development, degeneration and regeneration vol.84, 2015, https://doi.org/10.1016/j.addr.2014.08.010
  25. Out-of-Plane 3D-Printed Microfibers Improve the Shear Properties of Hydrogel Composites 2017, https://doi.org/10.1002/smll.201702773
  26. A review on gradient hydrogel/fiber scaffolds for osteochondral regeneration 2018, https://doi.org/10.1002/term.2628
  27. Reinforcing an Injectable Gelatin Hydrogel with PLLA Microfibers: Two Routes for Short Fiber Production vol.300, pp.10, 2015, https://doi.org/10.1002/mame.201500033
  28. Cellularized Cylindrical Fiber/Hydrogel Composites for Ligament Tissue Engineering vol.15, pp.1, 2014, https://doi.org/10.1021/bm4013056
  29. Reinforcement of Mono- and Bi-layer Poly(Ethylene Glycol) Hydrogels with a Fibrous Collagen Scaffold vol.43, pp.11, 2015, https://doi.org/10.1007/s10439-015-1337-0
  30. In Situ Fabrication of Fiber Reinforced Three-Dimensional Hydrogel Tissue Engineering Scaffolds vol.3, pp.8, 2017, https://doi.org/10.1021/acsbiomaterials.7b00229
  31. Fibre-reinforced hydrogels with high optical transparency vol.59, pp.5, 2014, https://doi.org/10.1179/1743280414Y.0000000032
  32. Creating polymer hydrogel microfibres with internal alignment via electrical and mechanical stretching vol.35, pp.10, 2014, https://doi.org/10.1016/j.biomaterials.2013.12.081
  33. Nanocomposite hydrogels for cartilage tissue engineering: a review 2017, https://doi.org/10.1080/21691401.2017.1345924
  34. Smart Polymers for Neural Interfaces vol.53, pp.1, 2013, https://doi.org/10.1080/15583724.2012.751924
  35. A developmentally inspired combined mechanical and biochemical signaling approach on zonal lineage commitment of mesenchymal stem cells in articular cartilage regeneration vol.7, pp.1, 2015, https://doi.org/10.1039/C4IB00197D
  36. Osteoblast differentiation of mesenchymal stem cells on modified PES-PEG electrospun fibrous composites loaded with Zn2SiO4 bioceramic nanoparticles vol.92, pp.4, 2016, https://doi.org/10.1016/j.diff.2016.08.001
  37. Individualization of microfibrillated celluloses from oil palm empty fruit bunch: comparative studies between acid hydrolysis and ammonium persulfate oxidation vol.23, pp.1, 2016, https://doi.org/10.1007/s10570-015-0812-y
  38. State of the art composites comprising electrospun fibres coupled with hydrogels: a review vol.9, pp.3, 2013, https://doi.org/10.1016/j.nano.2012.10.008
  39. Positive and negative cues for modulating neurite dynamics and receptor expression vol.12, pp.2, 2017, https://doi.org/10.1088/1748-605X/aa61d1
  40. Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs vol.10, pp.6, 2014, https://doi.org/10.1016/j.actbio.2014.02.041
  41. Mechanical behavior of a soft hydrogel reinforced with three-dimensional printed microfibre scaffolds vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-19502-y
  42. Mechanical behaviour of electrospun fibre-reinforced hydrogels vol.25, pp.3, 2014, https://doi.org/10.1007/s10856-013-5123-y
  43. Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks vol.10, pp.5, 2014, https://doi.org/10.1039/C3SM52272E
  44. Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair vol.11, 2015, https://doi.org/10.1016/j.actbio.2014.09.032
  45. A hydrogel/fiber composite scaffold for chondrocyte encapsulation in cartilage tissue regeneration vol.6, pp.86, 2016, https://doi.org/10.1039/C6RA15592H
  46. Silk fiber reinforcement modulates in vitro chondrogenesis in 3D composite scaffolds vol.12, pp.4, 2017, https://doi.org/10.1088/1748-605X/aa7697
  47. Ordered, adherent layers of nanofibers enabled by supramolecular interactions vol.2, pp.46, 2014, https://doi.org/10.1039/C4TB00724G
  48. Nutrient Channels Aid the Growth of Articular Surface-Sized Engineered Cartilage Constructs vol.22, pp.17-18, 2016, https://doi.org/10.1089/ten.tea.2016.0179
  49. Microfluidic on-chip biomimicry for 3D cell culture: a fit-for-purpose investigation from the end user standpoint vol.3, pp.2, 2017, https://doi.org/10.4155/fsoa-2016-0084
  50. 3D Printing and Electrospinning of Composite Hydrogels for Cartilage and Bone Tissue Engineering vol.10, pp.3, 2018, https://doi.org/10.3390/polym10030285
  51. Articular cartilage regeneration and tissue engineering models: a systematic review pp.1434-3916, 2019, https://doi.org/10.1007/s00402-018-3057-z
  52. Injectable hydrogels and nanocomposite hydrogels for cartilage regeneration pp.15493296, 2018, https://doi.org/10.1002/jbm.a.36449
  53. Toward Morphologically Relevant Extracellular Matrix in Vitro Models: 3D Fiber Reinforced Hydrogels vol.9, pp.1664-042X, 2018, https://doi.org/10.3389/fphys.2018.00966
  54. Fabrication and characterization of silk microfiber-reinforced methacrylated gelatin hydrogel with turnable properties vol.29, pp.17, 2018, https://doi.org/10.1080/09205063.2018.1493022
  55. Tissue Engineering for the Temporomandibular Joint vol.8, pp.2, 2019, https://doi.org/10.1002/adhm.201801236
  56. Controlling methacryloyl substitution of chondroitin sulfate: injectable hydrogels with tunable long-term drug release profiles pp.2050-7518, 2019, https://doi.org/10.1039/C8TB03020K
  57. Preparation of a Recombinant Spider Silk Protein/Pcl Blend Submicrofibrous Mat and Its Cytocompatibility vol.21, pp.2, 2011, https://doi.org/10.1177/096739111302100205
  58. A Review of Current Regenerative Medicine Strategies that Utilize Nanotechnology to Treat Cartilage Damage vol.10, pp.None, 2011, https://doi.org/10.2174/1874325001610010862
  59. Modern Strategies To Achieve Tissue-Mimetic, Mechanically Robust Hydrogels vol.8, pp.None, 2011, https://doi.org/10.1021/acsmacrolett.9b00276
  60. Nano-fibre Integrated Microcapsules: A Nano-in-Micro Platform for 3D Cell Culture vol.9, pp.None, 2011, https://doi.org/10.1038/s41598-019-50380-0
  61. Nanofiber-hydrogel composite–mediated angiogenesis for soft tissue reconstruction vol.11, pp.490, 2011, https://doi.org/10.1126/scitranslmed.aau6210
  62. Functional Protein-Based Bioinspired Nanomaterials: From Coupled Proteins, Synthetic Approaches, Nanostructures to Applications vol.20, pp.12, 2011, https://doi.org/10.3390/ijms20123054
  63. Hybrid and Composite Scaffolds Based on Extracellular Matrices for Cartilage Tissue Engineering vol.25, pp.3, 2011, https://doi.org/10.1089/ten.teb.2018.0245
  64. Fiber Density Modulates Cell Spreading in 3D Interstitial Matrix Mimetics vol.5, pp.6, 2019, https://doi.org/10.1021/acsbiomaterials.9b00141
  65. A Composite Hydrogel Scaffold Permits Self‐Organization and Matrix Deposition by Cocultured Human Glomerular Cells vol.8, pp.17, 2011, https://doi.org/10.1002/adhm.201900698
  66. Specialty Tough Hydrogels and Their Biomedical Applications vol.9, pp.2, 2011, https://doi.org/10.1002/adhm.201901396
  67. Novel 3D Hybrid Nanofiber Scaffolds for Bone Regeneration vol.12, pp.3, 2020, https://doi.org/10.3390/polym12030544
  68. An electrospun polyurethane scaffold-reinforced zwitterionic hydrogel as a biocompatible device vol.8, pp.12, 2011, https://doi.org/10.1039/c9tb02870f
  69. Three‐dimensional electrospun nanofibrous scaffolds for bone tissue engineering vol.108, pp.4, 2011, https://doi.org/10.1002/jbm.b.34479
  70. 3D Extracellular Matrix Mimics: Fundamental Concepts and Role of Materials Chemistry to Influence Stem Cell Fate vol.21, pp.6, 2011, https://doi.org/10.1021/acs.biomac.0c00045
  71. HBC-nanofiber hydrogel scaffolds with 3D printed internal microchannels for enhanced cartilage differentiation vol.8, pp.28, 2020, https://doi.org/10.1039/d0tb00616e
  72. Composite Hydrogel of Methacrylated Hyaluronic Acid and Fragmented Polycaprolactone Nanofiber for Osteogenic Differentiation of Adipose-Derived Stem Cells vol.12, pp.9, 2011, https://doi.org/10.3390/pharmaceutics12090902
  73. Electrospun nanofibers in cancer research: from engineering of in vitro 3D cancer models to therapy vol.8, pp.18, 2011, https://doi.org/10.1039/d0bm00390e
  74. Nanotechnology and Osteoarthritis. Part 2: Opportunities for advanced devices and therapeutics vol.39, pp.3, 2021, https://doi.org/10.1002/jor.24842
  75. Proangiogenic Peptide Nanofiber Hydrogels for Wound Healing vol.7, pp.3, 2021, https://doi.org/10.1021/acsbiomaterials.0c01264
  76. Anisotropic Fiber-Reinforced Glycosaminoglycan Hydrogels for Heart Valve Tissue Engineering vol.27, pp.9, 2011, https://doi.org/10.1089/ten.tea.2020.0118
  77. A Collagen-Mimetic Organic-Inorganic Hydrogel for Cartilage Engineering vol.7, pp.2, 2021, https://doi.org/10.3390/gels7020073
  78. Fabrication of Thick Microfiber Mats Using Melt-Electrospinning vol.38, pp.7, 2011, https://doi.org/10.7736/jkspe.020.110
  79. Surface Modification of Nanofibers by Physical Adsorption of Fiber-Homologous Amphiphilic Copolymers and Nanofiber-Reinforced Hydrogels with Excellent Tissue Adhesion vol.7, pp.10, 2021, https://doi.org/10.1021/acsbiomaterials.1c00982
  80. Preparation and evaluation of gellan gum hydrogel reinforced with silk fibers with enhanced mechanical and biological properties for cartilage tissue engineering vol.15, pp.11, 2011, https://doi.org/10.1002/term.3237