DOI QR코드

DOI QR Code

Design rules for creating sensing and self-actuating microcapsules

  • Kolmakov, German V. (Chemical Engineering Department, University of Pittsburgh) ;
  • Yashin, Victor V. (Chemical Engineering Department, University of Pittsburgh) ;
  • Balazs, Anna C. (Chemical Engineering Department, University of Pittsburgh)
  • Received : 2010.03.15
  • Accepted : 2010.10.29
  • Published : 2011.03.25

Abstract

Using computational modeling, we design a pair of biomimetic microcapsules that exploit chemical mechanisms to communicate and alter their local environment. As a result, these synthetic objects can undergo autonomous, directed motion. In the simulations, signaling microcapsules release "agonist" particles, while target microcapsules release "antagonist" particles and the permeabilities of both capsule types depend on the local particle concentration in the surrounding solution. Additionally, the released nanoscopic particles can bind to the underlying substrate and thereby create adhesion gradients that propel the microcapsules to move. Hydrodynamic interactions and the feedback mechanism provided by the dissolved particles are both necessary to achieve the cooperative behavior exhibited by these microcapsules. Our model provides a platform for integrating both the spatial and temporal behavior of assemblies of "artificial cells", and allows us to design a rich variety of structures capable of exhibiting complex dynamics. Due to the cell-like attributes of polymeric microcapsules and polymersomes, material systems are available for realizing our predictions.

Keywords

References

  1. Alexeev, A., Verberg, R. and Balazs, A.C. (2005), "Modeling the motion of microcapsules on compliant polymeric surfaces", Macromolecules, 38(24), 10244-10260. https://doi.org/10.1021/ma0516135
  2. Alexeev, A., Verberg, R. and Balazs, A.C. (2006), "Designing compliant substrates to regulate the motion of vesicles", Phys. Rev. Lett., 96(14), 148103. https://doi.org/10.1103/PhysRevLett.96.148103
  3. Alexeev, A. and Balazs, A.C. (2007), "Designing smart systems to selectively entrap and burst microcapsules", Soft Matter, 3(12), 1500-1505. https://doi.org/10.1039/b711769h
  4. Alexeev, A., Verberg, R. and Balazs, A.C. (2007), "Patterned surfaces segregate compliant microcapsules", Langmuir, 23(3), 983-987. https://doi.org/10.1021/la062914q
  5. Artyomov, M.N., Das, J., Kardar, M. and Chakraborty, A.K. (2007), "Purely stochastic binary decisions in cell signaling models without underlying deterministic bistabilities", Proc. Natl. Acad. Sci. U.S.A. 104, 18958-18963. https://doi.org/10.1073/pnas.0706110104
  6. Bellomo, E.G., Wyrsta, M.D., Pakstis, L., Pochan, D.J. and Deming, T.J. (2004), "Stimuli-responsive polypeptide vesicles by conformation-specific assembly", Nature Mater., 3, 244-248. https://doi.org/10.1038/nmat1093
  7. Bhattacharya, A., Usta, O.B., Yashin, V.V. and Balazs, A.C. (2009), "Self-sustained motion of a train of haptotactic microcapsules", Langmuir, 25(17), 9644-9647. https://doi.org/10.1021/la9017823
  8. Buxton, G.A., Care, C.M. and Cleaver, D.J. (2001), "A lattice spring model of heterogeneous material with plasticity", Modelling Simul. Mater. Sci. Eng., 9(6), 485-497. https://doi.org/10.1088/0965-0393/9/6/302
  9. Buxton, G.A., Verberg, R., Jasnow, D. and Balazs, A.C. (2005), "Newtonian fluid meets an elastic solid: Coupling lattice Boltzmann and lattice-spring models", Phys. Rev. E, 71(5), 056707. https://doi.org/10.1103/PhysRevE.71.056707
  10. Discher, B.M., Won, Y.Y., Ege, D.S., Lee, J.C.M., Bates, F.S., Discher, D.E. and Hammer, D.A. (1999), "Tough vesicles made from diblock copolymers", Science, 284(5417), 1143-1146. https://doi.org/10.1126/science.284.5417.1143
  11. Ebbens, S.J. and Howse, J.R. (2010), "In pursuit of propulsion at the nanoscale", Soft Matter, 6(4), 726-738. https://doi.org/10.1039/b918598d
  12. Hammer, D.A., Robbins, G.P., Haun, J.B., Lin, J.J., Qi, W., Smith, L.A., Ghoroghchian, P.P., Therien, M.J. and Bates, F.S. (2008), "Leuko-polymersomes", Faraday Discuss., 139, 129-141. https://doi.org/10.1039/b717821b
  13. Fiddes, L.K., Chan, H.K.C., Wyss, K., Simmons, C.A., Kumacheva, E. and Wheeler, A.R., (2009), "Augmenting microgel flow via receptor-ligand binding in the constrained geometries of microchannels", Lab Chip, 9, 286- 290. https://doi.org/10.1039/b807106c
  14. Hong, Y., Velegol, D., Chaturvedi, N. and Sen, A. (2010), "Biomimetic behavior of synthetic particles: from microscopic randomness to macroscopic control", Phys. Chem. Chem. Phys., 12(7), 1423-1435. https://doi.org/10.1039/b917741h
  15. Gusev, A.A., (2004), "Finite element mapping for spring network representations of the mechanics of solids", Phys. Rev. Lett., 93(3), 034302. https://doi.org/10.1103/PhysRevLett.93.034302
  16. Jones, R.A.L. (2004), "Biomimetic polymers: tough and smart", Nat. Mater., 3, 209-210. https://doi.org/10.1038/nmat1109
  17. Kolmakov, G.V., Yashin, V.V., Levitan, S.P. and Balazs, A.C. (2010), "Designing communicating colonies of biomimetic microcapsules", Proc. Natl. Acad. Sci., 107(28), 12417-12422. https://doi.org/10.1073/pnas.1001950107
  18. Ladd, A.J.C., Kinney, J.H. and Breunig, T.M. (1997), "Deformation and failure in cellular materials", Phys. Rev. E, 55(3), 3271-3275. https://doi.org/10.1103/PhysRevE.55.3271
  19. Lallemand, P. and Luo, L.S. (2000), "Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability", Phys. Rev. E, 61(6), 6546-6562. https://doi.org/10.1103/PhysRevE.61.6546
  20. Ma, Y., Dong, W.F., Hempenius, M.A., Mohwald, H. and Vancso, G.J. (2006), "Redox-controlled molecular permeability of composite-wall microcapsules", Nat. Mater., 5, 724-729. https://doi.org/10.1038/nmat1716
  21. Nakata, S., Komoto, H., Hayashi, K. and Menzinger, M. (2000), "Mercury drop "attacks" an oxidant crystal", J. Phys. Chem. B, 104(15), 3589-3593. https://doi.org/10.1021/jp9936502
  22. Ottinger, H.C. (1996), Stochastic processes in polymeric fluids, Springer, Berlin.
  23. Peyratout, C.S. and Dahne, L. (2004), "Tailor-made polyelectrolyte microcapsules: From multilayers to smart containers", Angew. Chem., Int. Edit., 43(29), 3762-3783. https://doi.org/10.1002/anie.200300568
  24. Rojek, J. and Onate, E., (2007), "Multiscale analysis using a coupled discrete/finite element model", Interaction and Multiscale Mechanics, 1(1), 1-31.
  25. Shi, G. and Tang, L., (2008), "Weak form of generalized governing equations in theory of elasticity", Interaction and Multiscale Mechanics, 1(3), 329-337. https://doi.org/10.12989/imm.2008.1.3.329
  26. Solon, J., Streicher, P., Richter, R., Brochard-Wyart, F. and Bassereau, P. (2006), "Vesicles surfing on a lipid bilayer: Self-induced haptotactic motion", Proc. Natl. Acad. Sci. U.S.A., 103(33), 12382-12387. https://doi.org/10.1073/pnas.0601400103
  27. Stadler, B., Price, A.D., Chandrawati, R., Hosta-Rigau, L., Zelikin, A.N. and Caruso, F. (2009), "Polymer hydrogel capsules: en route toward synthetic cellular systems", Nanoscale, 1(1), 68-73. https://doi.org/10.1039/b9nr00143c
  28. Sen, A., Ibele, M. Hong, Y. and Velegol, D. (2009), "Chemo and phototactic nano/microbots", Faraday Discuss., 143, 15-27. https://doi.org/10.1039/b900971j
  29. Shchukin, D.G., Zheludkevich, M., Yasakau, K., Lamaka, S., Ferreira, M.G.S. and Mohwald, H. (2006), "Layerby- Layer assembled nanocontainers for self-healing corrosion protection", Adv. Mater., 18(13), 1672-1678. https://doi.org/10.1002/adma.200502053
  30. Succi, S. (2001), The lattice Boltzmann equation for fluid dynamics and beyond, Clarendon Press, Oxford, UK.
  31. Sukhorukov, G.B., Antipov, A.A., Voigt, A., Donath, E. and Mohwald, H. (2001), "pH-controlled macromolecule encapsulation in and release from polyelectrolyte multilayer nanocapsules", Macromol. Rapid Comm., 22(1), 44-46. https://doi.org/10.1002/1521-3927(20010101)22:1<44::AID-MARC44>3.0.CO;2-U
  32. Sukhorukov, G., Fery, A. and Mohwald, H. (2005), "Intelligent micro- and nanocapsules", Prog. Polym. Sci., 30(8-9), 885-897. https://doi.org/10.1016/j.progpolymsci.2005.06.008
  33. Szymchak, P. and Ladd, A.J.C. (2003), "Boundary conditions for stochastic solutions of the convective-diffusion equations", Phys. Rev. E, 68(3), 036704. https://doi.org/10.1103/PhysRevE.68.036704
  34. Tiourina, O.P., Radtchenko, I., Sukhorukov, G.B. and Mohwald, H. (2002), "Artificial cell based on lipid hollow polyelectrolyte microcapsules: Channel reconstruction and membrane potential measurement", J. Membrane Biol., 190(1), 9-16. https://doi.org/10.1007/s00232-002-1018-4
  35. Toyota, T., Maru, N., Hanczyc, M.M., Ikegami, T. and Sugawara, T. (2009) "Self-propelled oil droplets consuming "fuel" surfactant", J. Am. Chem. Soc., 131(14), 5012-5013. https://doi.org/10.1021/ja806689p
  36. Usta, O.B., Alexeev, A. and Balazs, A.C. (2007), "Fork in the road: patterned surfaces direct microcapsules to make a decision", Langmuir, 23(22), 10887-10890. https://doi.org/10.1021/la7018583
  37. Usta, O.B., Alexeev, A., Zhu, G. and Balazs, A.C. (2008), "Modeling microcapsules that communicate through nanoparticles to undergo self-propelled motion", ACS Nano, 2(3), 471-476. https://doi.org/10.1021/nn700379v
  38. Verberg, R, Yeomans, J.M., and Balazs, A.C. (2005), "Modeling the flow of fluid/particle mixtures in microchannels: Encapsulating nanoparticles within monodisperse droplets", J. Chem Phys., 123, 224706. https://doi.org/10.1063/1.2133733
  39. Verberg, R., Alexeev, A. and Balazs, A.C. (2006), "Modeling the release of nanoparticles from mobile microcapsules", J. Chem. Phys., 125, 224712. https://doi.org/10.1063/1.2404955
  40. Verberg, R., Dale, A.T., Kumar, P., Alexeev, A. and Balazs, A.C. (2007), "Healing substrates with mobile particle-filled microcapsules: Designing a 'repair and go' system", J. R. Soc. Interface, 4(13), 349-357. https://doi.org/10.1098/rsif.2006.0165
  41. Weibel, D.B., Garstecki, P., Ryan, D., DiLuzio, W.R., Mayer, M., Seto, J.E. and Whitesides, G.M., (2005), "Microoxen: Microorganisms to move microscale loads", Proc. Natl. Acad. Sci., 102(34), 11963-11967. https://doi.org/10.1073/pnas.0505481102
  42. Zhang, J., Srivastava, S., Duffadar, R., Davis, J.M., Rotello, V.M. and Santore, M.M. (2008), "Manipulating microparticles with single surface-immobilized nanoparticles", Langmuir, 24(13), 6404-6408. https://doi.org/10.1021/la800857v
  43. Zhu, G., Alexeev, A. and Balazs, A.C. (2007), "Designing constricted microchannels to selectively entrap soft particles", Macromol., 40(14), 5176-5181. https://doi.org/10.1021/ma0706632
  44. Zhu, G., Alexeev, A., Kumacheva, E. and Balazs, A.C. (2007a), "Modeling the interactions between compliant microcapsules and pillars in microchannels", J. Chem. Phys., 127, 034703. https://doi.org/10.1063/1.2753150

Cited by

  1. Self-propelling capsules as artificial microswimmers vol.19, pp.6, 2014, https://doi.org/10.1016/j.cocis.2014.09.006
  2. Computational design of microscopic swimmers and capsules: From directed motion to collective behavior vol.21, 2016, https://doi.org/10.1016/j.cocis.2015.10.012