Acknowledgement
Supported by : Korea Research Foundation
References
- Andelfinger, U. and Ramm, E. (1993), "EAS-elements for two dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements", Int. J. Numer. Meth. Eng., 36, 1311-1337. https://doi.org/10.1002/nme.1620360805
- Bathe, K.J. and Dvorkin, E.N. (1986), "A formulation of general shell elements-The use of mixed interpolation of tensorial components", Int. J. Numer. Meth. Eng., 22, 697-722. https://doi.org/10.1002/nme.1620220312
- Bathe, K.J., Lee, P.S. and Hiller, J.F. (2003), "Towards improving the MITC9 shell element", Comput. Struct., 81, 477-489. https://doi.org/10.1016/S0045-7949(02)00483-2
- Bucalem, M.L. and Bathe, K.J. (1993), "Higher-order MITC general shell elements", Int. J. Numer. Meth. Eng., 36, 3729-3754. https://doi.org/10.1002/nme.1620362109
- Choi, C.K., Lee, P.S. and Park, Y.M. (1999), "Defect-free 4-node flat shell element: NMS-4F element", Struct. Eng. Mech., 8, 207-231. https://doi.org/10.12989/sem.1999.8.2.207
- Han, S.C., Ham, H.D. and Kanok-Nukulchai, W. (2008), "Geometrically non-linear analysis of arbitrary elastic supported plates and shells using an element-based Lagrangian shell element", Int. J. Nonlin. Mech., 43, 53-64. https://doi.org/10.1016/j.ijnonlinmec.2007.09.011
- Han, S.C., Kim, K.D. and Kanok-Nukulchai, W. (2004), "An element-based 9-node resultant shell element for large deformation analysis of laminated composite plates and shells", Struct. Eng. Mech., 18, 807-829. https://doi.org/10.12989/sem.2004.18.6.807
- Han, S.C., Lee, S.Y. and Rus, G. (2006), "Postbuckling analysis of laminated composite plates subjected to the combination of the in-plane shear, compression and lateral loading", Int. J. Solids Struct., 43(18-19), 5713-5735. https://doi.org/10.1016/j.ijsolstr.2005.08.004
- Han, S.C., Tabiei, A. and Park, W.T. (2008), "Geometrically nonlinear analysis of laminated composite thin shells using a modified first-order shear deformable element-based Lagrangian shell element", Compos. Struct., 82, 465-474. https://doi.org/10.1016/j.compstruct.2007.01.027
- Hinton, E. and Huang, H.C. (1986), "A family of quadrilateral Mindlin plate elements with substitute shear strain fields", Comput. Struct., 23, 409-431. https://doi.org/10.1016/0045-7949(86)90232-4
- Huang, H.C. (1989), Static and Dynamic Analysis of Plates and Shells. Springer-Verlag, London.
- Kanok-Nukulchai, W. (1979), "A simple and efficient finite element for general shell analysis", Int. J. Numer. Meth. Eng., 14, 179-200. https://doi.org/10.1002/nme.1620140204
- Kim, K.D. and Park, T.H. (2002), "An 8-node assumed strain element with explicit integration for isotropic and laminated composite shells", Struct. Eng. Mech., 13, 1-18. https://doi.org/10.12989/sem.2002.13.1.001
- Kim, K.D., Lomboy, G.R. and Han, S.C. (2003), "A co-rotational 8-node assumed strain shell element for postbuckling analysis of laminated composite plates and shells", Comput. Mech., 30, 330-342. https://doi.org/10.1007/s00466-003-0415-6
- Kim, K.D., Lomboy, G.R. and Voyiadjis, G.Z. (2003), "A 4-node assumed strain quasi-conforming shell element with 6 degrees of freedom", Int. J. Numer. Meth. Eng., 58, 2177-2200. https://doi.org/10.1002/nme.854
- Lakshminarayana, H.V. and Kailash, K. (1989), "A shear deformable curved shell element of quadrilateral shape", Comput. Struct., 33, 987-1001. https://doi.org/10.1016/0045-7949(89)90434-3
- Li, Z.X., Izzuddin, B.A. and Vu-Quoc, L. (2008), "A 9-node co-rotational quadrilateral shell element", Comput. Mech., 42, 873-884. https://doi.org/10.1007/s00466-008-0289-8
- Ma, H. and Kanok-Nukulchai, W. (1989), "On the application of assumed strained methods", (Eds. Kanok-Nukulchai et al.), Structural engineering and construction, achievement, trends and challenges, AIT, Bankok.
- MacNeal, R.H. and Harder, R.L. (1985), "A proposed standard set of problems to test finite element accuracy", Finite Elem. Analy. Des., 1, 3-20. https://doi.org/10.1016/0168-874X(85)90003-4
- MacNeal, R.H. and Harder, R.L. (1992), "Eight nodes or nine?", Int. J. Numer. Meth. Eng., 33, 1049-1058. https://doi.org/10.1002/nme.1620330510
- Polit, O., Touratier, M. and Lory, P. (1994), "A new eight-node quadrilateral shear-bending plate finite element", Int. J. Numer. Meth. Eng., 37, 387-411. https://doi.org/10.1002/nme.1620370303
- Qi, Y., Knight, N.F. Jr. (1996), "A refined first-order shear-deformation theory and its justification by plane-strain bending problem of laminated plates", Int. J. Solids Struct., 33(1), 49-64. https://doi.org/10.1016/0020-7683(95)00010-8
- Saleeb, A.F., Chang, T.Y. and Graf, W. (1987), "A quadrilateral shell element using a mixed formulation", Comput. Struct., 26, 787-803. https://doi.org/10.1016/0045-7949(87)90028-9
- Simo, J.C., Fox, D.D. and Rifai, M.S. (1989), "A Stress Resultant Geometrically Exact Shell Model, Part II The Linear Theory; Computational Aspects", Comput. Meth. Appl. Mech. Eng., 73, 53-92. https://doi.org/10.1016/0045-7825(89)90098-4
- STRAND 7, (2000), Verification Manual, G+D Computing Pty Ltd, Sydney.
- Tanov, R. and Tabiei, A. (2000), "Simple correction to the first-order shear deformation shell finite element formulations", Finite Elem. Analy. Des., 35, 189-197. https://doi.org/10.1016/S0168-874X(99)00069-4
- Timoshenko, S.P. and Woinowosky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-Hill, Kogakusa.
- Wu, Z., Cheung, Y.K., Lo, S.H. and Chen W. (2008), "Effects of higher-order global-local shear deformations on bending, vibration and buckling of multilayered plates", Compos. Struct., 82(2), 277-289. https://doi.org/10.1016/j.compstruct.2007.01.017
- XFINAS, (2008), Validation Manual, available in www.xfinas.com.
- Young, W.C. (1989), Roark's Formulas for Stress and Strain. 6th Edition, McGraw-Hill, New York.
- Zienkiewicz, O.C. and Taylor, R.L. (1989), The Finite Element Method, McGraw-Hill, London.
- Zienkiewicz, O.C. and Taylor, R.L. (2000), The Finite Element Method, Butterworth-Heinemann, London.
Cited by
- Vibration and stability analysis of thick orthotropic plates using hybrid-Trefftz elements vol.38, pp.24, 2014, https://doi.org/10.1016/j.apm.2014.04.026
- Stiffened orthotropic corner supported hypar shells: Effect of stiffener location, rise/span ratio and fiber orientaton on vibration behavior vol.12, pp.4, 2012, https://doi.org/10.12989/scs.2012.12.4.275
- An improved treatment of mixed interpolation functions in eight-node assumed natural strain shell element for vibration analysis vol.5, pp.1, 2012, https://doi.org/10.1080/19373260.2012.638062
- Shear buckling responses of laminated composite shells using a modified 8-node ANS shell element vol.109, 2014, https://doi.org/10.1016/j.compstruct.2013.10.055
- Transient analysis of FGM and laminated composite structures using a refined 8-node ANS shell element vol.56, 2014, https://doi.org/10.1016/j.compositesb.2013.08.044
- Nonlinear finite element analysis of loading transferred from column to socket base vol.11, pp.5, 2013, https://doi.org/10.12989/cac.2013.11.5.475
- A refined element-based Lagrangian shell element for geometrically nonlinear analysis of shell structures vol.7, pp.4, 2015, https://doi.org/10.1177/1687814015581272
- Structural Stability and Dynamics of FGM Plates Using an Improved 8-ANS Finite Element vol.2016, 2016, https://doi.org/10.1155/2016/2821473
- Postbuckling analysis of laminated composite shells under shear loads vol.21, pp.2, 2016, https://doi.org/10.12989/scs.2016.21.2.373
- Geometrically Nonlinear Analysis of Hinged Cylindrical Laminated Composite Shells vol.3, pp.2, 2012, https://doi.org/10.11004/kosacs.2012.3.2.001
- An 8-Node Shell Element for Nonlinear Analysis of Shells Using the Refined Combination of Membrane and Shear Interpolation Functions vol.2013, 2013, https://doi.org/10.1155/2013/276304