DOI QR코드

DOI QR Code

A refined finite element for first-order plate and shell analysis

  • Han, Sung-Cheon (Department of Civil and Railroad Engineering, Daewon University College) ;
  • Kanok-Nukulchai, Worsak (School of Engineering and Technology, Asian Institute of Technology) ;
  • Lee, Won-Hong (Department of Civil Engineering, Gyeongnam National University of Science and Technology)
  • Received : 2010.04.12
  • Accepted : 2011.08.17
  • Published : 2011.10.25

Abstract

This paper presents an improved 8-node shell element for the analysis of plates and shells. The finite element, based on a refined first-order shear deformation theory, is further improved by the combined use of assumed natural strain method. We analyze the influence of the shell element with the different patterns of sampling points for interpolating different components of strains. Using the assumed natural strain method with proper interpolation functions, the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. Further, a refined first-order shear deformation theory, which results in parabolic through-thickness distribution of the transverse shear strains from the formulation based on the third-order shear deformation theory, is proposed. This formulation eliminates the need for shear correction factors in the first-order theory. Numerical examples demonstrate that the present element perform better in comparison with other shell elements.

Keywords

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Andelfinger, U. and Ramm, E. (1993), "EAS-elements for two dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements", Int. J. Numer. Meth. Eng., 36, 1311-1337. https://doi.org/10.1002/nme.1620360805
  2. Bathe, K.J. and Dvorkin, E.N. (1986), "A formulation of general shell elements-The use of mixed interpolation of tensorial components", Int. J. Numer. Meth. Eng., 22, 697-722. https://doi.org/10.1002/nme.1620220312
  3. Bathe, K.J., Lee, P.S. and Hiller, J.F. (2003), "Towards improving the MITC9 shell element", Comput. Struct., 81, 477-489. https://doi.org/10.1016/S0045-7949(02)00483-2
  4. Bucalem, M.L. and Bathe, K.J. (1993), "Higher-order MITC general shell elements", Int. J. Numer. Meth. Eng., 36, 3729-3754. https://doi.org/10.1002/nme.1620362109
  5. Choi, C.K., Lee, P.S. and Park, Y.M. (1999), "Defect-free 4-node flat shell element: NMS-4F element", Struct. Eng. Mech., 8, 207-231. https://doi.org/10.12989/sem.1999.8.2.207
  6. Han, S.C., Ham, H.D. and Kanok-Nukulchai, W. (2008), "Geometrically non-linear analysis of arbitrary elastic supported plates and shells using an element-based Lagrangian shell element", Int. J. Nonlin. Mech., 43, 53-64. https://doi.org/10.1016/j.ijnonlinmec.2007.09.011
  7. Han, S.C., Kim, K.D. and Kanok-Nukulchai, W. (2004), "An element-based 9-node resultant shell element for large deformation analysis of laminated composite plates and shells", Struct. Eng. Mech., 18, 807-829. https://doi.org/10.12989/sem.2004.18.6.807
  8. Han, S.C., Lee, S.Y. and Rus, G. (2006), "Postbuckling analysis of laminated composite plates subjected to the combination of the in-plane shear, compression and lateral loading", Int. J. Solids Struct., 43(18-19), 5713-5735. https://doi.org/10.1016/j.ijsolstr.2005.08.004
  9. Han, S.C., Tabiei, A. and Park, W.T. (2008), "Geometrically nonlinear analysis of laminated composite thin shells using a modified first-order shear deformable element-based Lagrangian shell element", Compos. Struct., 82, 465-474. https://doi.org/10.1016/j.compstruct.2007.01.027
  10. Hinton, E. and Huang, H.C. (1986), "A family of quadrilateral Mindlin plate elements with substitute shear strain fields", Comput. Struct., 23, 409-431. https://doi.org/10.1016/0045-7949(86)90232-4
  11. Huang, H.C. (1989), Static and Dynamic Analysis of Plates and Shells. Springer-Verlag, London.
  12. Kanok-Nukulchai, W. (1979), "A simple and efficient finite element for general shell analysis", Int. J. Numer. Meth. Eng., 14, 179-200. https://doi.org/10.1002/nme.1620140204
  13. Kim, K.D. and Park, T.H. (2002), "An 8-node assumed strain element with explicit integration for isotropic and laminated composite shells", Struct. Eng. Mech., 13, 1-18. https://doi.org/10.12989/sem.2002.13.1.001
  14. Kim, K.D., Lomboy, G.R. and Han, S.C. (2003), "A co-rotational 8-node assumed strain shell element for postbuckling analysis of laminated composite plates and shells", Comput. Mech., 30, 330-342. https://doi.org/10.1007/s00466-003-0415-6
  15. Kim, K.D., Lomboy, G.R. and Voyiadjis, G.Z. (2003), "A 4-node assumed strain quasi-conforming shell element with 6 degrees of freedom", Int. J. Numer. Meth. Eng., 58, 2177-2200. https://doi.org/10.1002/nme.854
  16. Lakshminarayana, H.V. and Kailash, K. (1989), "A shear deformable curved shell element of quadrilateral shape", Comput. Struct., 33, 987-1001. https://doi.org/10.1016/0045-7949(89)90434-3
  17. Li, Z.X., Izzuddin, B.A. and Vu-Quoc, L. (2008), "A 9-node co-rotational quadrilateral shell element", Comput. Mech., 42, 873-884. https://doi.org/10.1007/s00466-008-0289-8
  18. Ma, H. and Kanok-Nukulchai, W. (1989), "On the application of assumed strained methods", (Eds. Kanok-Nukulchai et al.), Structural engineering and construction, achievement, trends and challenges, AIT, Bankok.
  19. MacNeal, R.H. and Harder, R.L. (1985), "A proposed standard set of problems to test finite element accuracy", Finite Elem. Analy. Des., 1, 3-20. https://doi.org/10.1016/0168-874X(85)90003-4
  20. MacNeal, R.H. and Harder, R.L. (1992), "Eight nodes or nine?", Int. J. Numer. Meth. Eng., 33, 1049-1058. https://doi.org/10.1002/nme.1620330510
  21. Polit, O., Touratier, M. and Lory, P. (1994), "A new eight-node quadrilateral shear-bending plate finite element", Int. J. Numer. Meth. Eng., 37, 387-411. https://doi.org/10.1002/nme.1620370303
  22. Qi, Y., Knight, N.F. Jr. (1996), "A refined first-order shear-deformation theory and its justification by plane-strain bending problem of laminated plates", Int. J. Solids Struct., 33(1), 49-64. https://doi.org/10.1016/0020-7683(95)00010-8
  23. Saleeb, A.F., Chang, T.Y. and Graf, W. (1987), "A quadrilateral shell element using a mixed formulation", Comput. Struct., 26, 787-803. https://doi.org/10.1016/0045-7949(87)90028-9
  24. Simo, J.C., Fox, D.D. and Rifai, M.S. (1989), "A Stress Resultant Geometrically Exact Shell Model, Part II The Linear Theory; Computational Aspects", Comput. Meth. Appl. Mech. Eng., 73, 53-92. https://doi.org/10.1016/0045-7825(89)90098-4
  25. STRAND 7, (2000), Verification Manual, G+D Computing Pty Ltd, Sydney.
  26. Tanov, R. and Tabiei, A. (2000), "Simple correction to the first-order shear deformation shell finite element formulations", Finite Elem. Analy. Des., 35, 189-197. https://doi.org/10.1016/S0168-874X(99)00069-4
  27. Timoshenko, S.P. and Woinowosky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-Hill, Kogakusa.
  28. Wu, Z., Cheung, Y.K., Lo, S.H. and Chen W. (2008), "Effects of higher-order global-local shear deformations on bending, vibration and buckling of multilayered plates", Compos. Struct., 82(2), 277-289. https://doi.org/10.1016/j.compstruct.2007.01.017
  29. XFINAS, (2008), Validation Manual, available in www.xfinas.com.
  30. Young, W.C. (1989), Roark's Formulas for Stress and Strain. 6th Edition, McGraw-Hill, New York.
  31. Zienkiewicz, O.C. and Taylor, R.L. (1989), The Finite Element Method, McGraw-Hill, London.
  32. Zienkiewicz, O.C. and Taylor, R.L. (2000), The Finite Element Method, Butterworth-Heinemann, London.

Cited by

  1. Vibration and stability analysis of thick orthotropic plates using hybrid-Trefftz elements vol.38, pp.24, 2014, https://doi.org/10.1016/j.apm.2014.04.026
  2. Stiffened orthotropic corner supported hypar shells: Effect of stiffener location, rise/span ratio and fiber orientaton on vibration behavior vol.12, pp.4, 2012, https://doi.org/10.12989/scs.2012.12.4.275
  3. An improved treatment of mixed interpolation functions in eight-node assumed natural strain shell element for vibration analysis vol.5, pp.1, 2012, https://doi.org/10.1080/19373260.2012.638062
  4. Shear buckling responses of laminated composite shells using a modified 8-node ANS shell element vol.109, 2014, https://doi.org/10.1016/j.compstruct.2013.10.055
  5. Transient analysis of FGM and laminated composite structures using a refined 8-node ANS shell element vol.56, 2014, https://doi.org/10.1016/j.compositesb.2013.08.044
  6. Nonlinear finite element analysis of loading transferred from column to socket base vol.11, pp.5, 2013, https://doi.org/10.12989/cac.2013.11.5.475
  7. A refined element-based Lagrangian shell element for geometrically nonlinear analysis of shell structures vol.7, pp.4, 2015, https://doi.org/10.1177/1687814015581272
  8. Structural Stability and Dynamics of FGM Plates Using an Improved 8-ANS Finite Element vol.2016, 2016, https://doi.org/10.1155/2016/2821473
  9. Postbuckling analysis of laminated composite shells under shear loads vol.21, pp.2, 2016, https://doi.org/10.12989/scs.2016.21.2.373
  10. Geometrically Nonlinear Analysis of Hinged Cylindrical Laminated Composite Shells vol.3, pp.2, 2012, https://doi.org/10.11004/kosacs.2012.3.2.001
  11. An 8-Node Shell Element for Nonlinear Analysis of Shells Using the Refined Combination of Membrane and Shear Interpolation Functions vol.2013, 2013, https://doi.org/10.1155/2013/276304