References
- Cai, M. and Kaiser, P.K. (2004), "Numerical simulation of the Brazilian test and the tensile strength of anisotropic rocks and rocks with pre-existing cracks", Int. J. Rock Mech. Min., 41, 450-451. https://doi.org/10.1016/j.ijrmms.2003.12.111
- Cauweleart, F.V. and Eckmann, B. (1994), "Indirect tensile test applied to anisotropic materials", Mater. Struct., 27, 54-60. https://doi.org/10.1007/BF02472820
- Chen, C.S., Pan, E. and Amadei, B. (1998), "Determination of deformability and tensile strength of anisotropic rock using brazilian tests", Int. J. Rock Mech. Min., 35, 43-61. https://doi.org/10.1016/S0148-9062(97)00329-X
- Claesson, J. and Bohloli, B. (2002), "Brazilian test: stress field and tensile strength of anisotropic rocks using an analytical solution", Int. J. Rock Mech. Min., 39, 991-1004. https://doi.org/10.1016/S1365-1609(02)00099-0
- Exadaktylos, G.E. and Kaklis, K.N. (2001), "Applications of an explicit solution for the transversely isotropic circular disc compressed diametrically", Int. J. Rock Mech. Min., 38, 227-243. https://doi.org/10.1016/S1365-1609(00)00072-1
- Exadaktylos, G.E. (2001), "On the constraints and relations of elastic constants of transversely isotropic geomaterials", Int. J. Rock Mech. Min., 38, 941-956. https://doi.org/10.1016/S1365-1609(01)00063-6
- Jianhon, Y., Wu, F.Q. and Sun, J.Z. (2009), "Estimation of the tensile elastic modulus using Brazilian disc by applying diametrically opposed concentrated loads", Int. J. Rock Mech. Min., 46, 568-576. https://doi.org/10.1016/j.ijrmms.2008.08.004
- Kawakubo, S., Tsutsumi, T. and Hirashima, K. (1996), "Stress and displacement fields for an anisotropic elliptical disk subjected to arbitrary loads at boundary", Trans. JSME Series A, 62, 1626-1633. (in Japanese)
- Lavrov, A. and Vervoort, A. (2002), "Theoretical treatment of tangential loading effects on the Brazilian test stress distribution", Int. J. Rock Mech. Min., 39, 275-283. https://doi.org/10.1016/S1365-1609(02)00010-2
- Lekhnitskii, S.G. (1968), Anisotropic Plate, Gordon & Breach, New York.
- Lemmon, R.K. and Blackketter, D.M. (1996), "Stress analysis of an orthotropic material under diametral compression", Exp. Mech., 36, 204-211. https://doi.org/10.1007/BF02318008
- Markides, C.F., Pazis, D.N. and Kourkoulis, S.K. (2010), "Closed full-field solution for stresses and displacements in Brazilian disk under distributed radial load", Int. J. Rock Mech. Min., 47, 227-237. https://doi.org/10.1016/j.ijrmms.2009.11.006
- Sokolnikoff, I.S. (1956), Mathematical Theory of Elasticity, McGraw-Hill, New York.
- Tavallali, A. and Vervoort, A. (2010), "Effect of layer orientation on the failure of layered sandstone under Brazilian test conditions", Int. J. Rock Mech. Min., 47, 313-322. https://doi.org/10.1016/j.ijrmms.2010.01.001
- Timoshenko, S.P and Goodier, J.N. (1970), Theory of Elasticity, McGraw-Hill, New York.
- Tsutsumi, T. and Hirashima, K. (2000), "Analysis of orthotropic circular disks and rings under diametrical loading", Struct. Eng. Mech., 9(1), 37-50. https://doi.org/10.12989/sem.2000.9.1.037