References
- Amini, F. and Tavassoli, M.R. (2005), "Optimal structural active control force, number and placement of controllers", Eng. Struct., 27, 1306-1316. https://doi.org/10.1016/j.engstruct.2005.01.006
- Anderson, B.D.O. and Moore, J. (1990), Optimal Control: Linear Quadratic Methods, Prentice-Hall International Editions.
- Baber, T.T. and Wen, Y.K. (1981), "Random vibration of hysteretic degrading systems", J. Eng. Mech. Div., 107(6), 1069-1087.
- Baber, T.T. and Noori, M.N. (1985), "Random vibration of degrading, pinching systems", J. Eng. Mech., 111(8), 1010-1027. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:8(1010)
- Bernstein, D.S. (1993), "Nonquadratic cost and nonlinear feedback control", Int. J. Robust Nonlin., 3, 211-229. https://doi.org/10.1002/rnc.4590030303
- Bouc, R. (1967), "Forced vibration of mechanical system with hysteresis", Proceedings of the Fourth Conference on Nonlinear Oscillations, Prague, Czechoslovakia.
- Chen, G.P., Malik, O.P., Qin, Y.H. and Xu, G.Y. (1992), "Optimization technique for the design of a linear optimal power system stabilizer", IEEE T. Energy Conver., 7(3), 453-459. https://doi.org/10.1109/60.148566
- Chen, J.B. and Li, J. (2005), "Dynamic response and reliability analysis of nonlinear stochastic structures", Probabilist. Eng. Mech., 20(1), 33-44. https://doi.org/10.1016/j.probengmech.2004.05.006
- Chen, J.B. and Li, J. (2008), "Strategy for selecting representative points via tangent spheres in the probability density evolution method", Int. J. Numer. Meth. Eng., 74(13), 1988-2014. https://doi.org/10.1002/nme.2246
- Chen, J.B., Liu, W.Q., Peng, Y.B. and Li, J. (2007), "Stochastic seismic response and reliability analysis of baseisolated structures", J. Earthq. Eng., 11(6), 903-924. https://doi.org/10.1080/13632460701242757
- Chung, J. and Lee, J.M. (1994), "A new family of explicit time integration methods for linear and nonlinear structural dynamics", Int. J. Numer. Meth. Eng., 37, 3961-3976. https://doi.org/10.1002/nme.1620372303
- Clough, R.W. and Johnson, S.B. (1966), "Effects of stiffness degradation on earthquake ductility requirements", Proceedings of the 2nd Japan National Earthquake Engineering Conference, Tokyo, Japan.
- Clough, R.W. and Penzien, J. (1993), Dynamics of Structures, 2nd Edition, McGraw-Hill, New York.
- Eldred, M.S., Adams, B.M., Gay, D.M., Swiler, L.P., Haskell, K., Bohnhoff, W.J., Eddy, J.P., Hart, W.E., Watson, J.P., Griffin, J.D., Hough, P.D., Kolda, T.G., Williams, P.J. and Martinez-Canales, M.L. (2007), DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis (Version 4.1+ User's Manual). Sandia National Laboratories, SAND 2006-6337.
- Foliente, G.C. (1995), "Hysteresis modeling of wood joints and structural systems", J. Struct. Eng., 121(6), 1013-1022. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:6(1013)
- Iwan, W.D. (1961), The Dynamics Response of Bilinear Hysteretic System, California: California Institute of Technology.
- Li, J. and Ai, X.Q. (2006), "Study on random model of earthquake ground motion based on physical process", Earthq. Eng. Eng. Vib., 26(5), 21-26. (in Chinese)
- Li, J. and Chen, J.B. (2009), Stochastic Dynamics of Structures, John Wiley & Sons.
- Li, J., Peng, Y.B. and Chen, J.B. (2010a), "A physical approach to structural stochastic optimal controls", Probabilist. Eng. Mech., 25, 127-141. https://doi.org/10.1016/j.probengmech.2009.08.006
- Li, J., Peng, Y.B. and Chen, J.B. (2010b), "Probabilistic criteria of structural stochastic optimal controls", Probabilist. Eng. Mech., 26(2), 240-253.
- Ma, F., Zhang, H., Bochstedte, A., Foliente, G.C. and Paevere, P. (2004), "Parameter analysis of the differential model of hysteresis", J. Appl. Mech., 71, 342-349. https://doi.org/10.1115/1.1668082
- Masri, S.F., Bekey, G.A. and Caughey, T.K. (1981) "On-linear control of nonlinear flexible structures", J. Appl. Mech., 49, 871-884.
- Peng, Y.B., Ghanem, R. and Li, J. (2010), "Generalized optimal control policy for stochastic optimal control of structures", Struct. Control Hlth Mon. (revised and under review).
- Shefer, M. and Breakwell, J.V. (1987), "Estimation and control with cubic nonlinearities", J. Optimiz. Theory App., 53, 1-7. https://doi.org/10.1007/BF00938812
- Suhardjo, J., Spencer, J.B.F. and Sain, M.K. (1992), "Nonlinear optimal control of a duffing system", Int. J. Nonlin. Mech., 27(2), 157-172. https://doi.org/10.1016/0020-7462(92)90078-L
- Wen, Y.K. (1976), "Method for random vibration of hysteretic systems", J. Eng. Mech. Div., 102(2), 249-263.
- Yang, J.N., Agrawal, A.K. and Chen, S. (1996), "Optimal polynomial control for seismically excited non-linear and hysteretic structures", Earthq. Eng. Struct. D., 25, 1211-1230. https://doi.org/10.1002/(SICI)1096-9845(199611)25:11<1211::AID-EQE609>3.0.CO;2-3
- Yang, J.N., Akbarpour, A. and Ghaemmaghami, P. (1988), "Optimal control of nonlinear flexible structures", Technical Report NCEER-88-0002, National Center for Earthquake Engineering Research.
- Yang, J.N., Li, Z., Danielians, A. and Liu, S.C. (1992), "Hybrid control of nonlinear and hysteretic systems I", J. Eng. Mech., 118(7), 1423-1440. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:7(1423)
- Yang, J.N., Li, Z. and Vongchavalitkul, S. (1994), "Stochastic hybrid control of hysteretic structures", Probabilist. Eng. Mech., 9(1-2), 125-133. https://doi.org/10.1016/0266-8920(94)90036-1
- Yao, J.T.P. (1972), "Concept of structural control", J. Struct. Div., 98(7), 1567-1574.
- Zhu, W.Q., Ying, Z.G., Ni, Y.Q. and Ko, J.M. (2000), "Optimal nonlinear stochastic control of hysteretic systems", J. Eng. Mech., 126(10), 1027-1032. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:10(1027)
Cited by
- Stationary response of bilinear hysteretic system driven by Poisson white noise vol.33, 2013, https://doi.org/10.1016/j.probengmech.2013.03.005
- Seismic Risk–Based Stochastic Optimal Control of Structures Using Magnetorheological Dampers vol.18, pp.1, 2017, https://doi.org/10.1061/(ASCE)NH.1527-6996.0000215
- Experimental Investigations of Stochastic Control of Randomly Base-Excited Structures vol.15, pp.11, 2012, https://doi.org/10.1260/1369-4332.15.11.1963
- Stochastic seismic response analysis and reliability assessment of passively damped structures vol.20, pp.15, 2014, https://doi.org/10.1177/1077546313486910
- Dimension reduction of Karhunen-Loeve expansion for simulation of stochastic processes vol.408, 2017, https://doi.org/10.1016/j.jsv.2017.07.016
- Experimental and analytical studies on stochastic seismic response control of structures with MR dampers vol.5, pp.4, 2013, https://doi.org/10.12989/eas.2013.5.4.395
- Probabilistic analysis of wind-induced vibration mitigation of structures by fluid viscous dampers vol.409, 2017, https://doi.org/10.1016/j.jsv.2017.07.051
- Some new advance on the research of stochastic non-smooth systems vol.27, pp.11, 2018, https://doi.org/10.1088/1674-1056/27/11/110503
- Performance evaluation of base-isolated structures with sliding hydromagnetic bearings pp.15452255, 2019, https://doi.org/10.1002/stc.2278
- Full-Scale Simulations of Magnetorheological Damper for Implementation of Semi-Actively Structural Control pp.1811-8216, 2018, https://doi.org/10.1017/jmech.2018.26
- Experimental Study of Sliding Hydromagnetic Isolators for Seismic Protection vol.145, pp.5, 2019, https://doi.org/10.1061/(ASCE)ST.1943-541X.0002300
- Optimal discretization of stochastic integrals driven by general Brownian semimartingale vol.54, pp.3, 2018, https://doi.org/10.1214/17-aihp848
- Genetic algorithm-based integrated optimization of active control systems for civil structures subjected to random seismic excitations vol.52, pp.10, 2020, https://doi.org/10.1080/0305215x.2019.1677632
- Dynamic Physical Model for MR Damper Considering Chain Deflection in Preyield Stage vol.146, pp.11, 2020, https://doi.org/10.1061/(asce)em.1943-7889.0001855
- Dimension-reduction representation of stochastic ground motion fields based on wavenumber-frequency spectrum for engineering purposes vol.143, pp.None, 2011, https://doi.org/10.1016/j.soildyn.2021.106604