DOI QR코드

DOI QR Code

Development of a three-dimensional dynamic model for chemotaxis

  • Song, Jihwan (Department of Mechanical Engineering, Sogang University) ;
  • Kim, Dongchoul (Department of Mechanical Engineering, Sogang University)
  • Received : 2010.11.11
  • Accepted : 2010.02.18
  • Published : 2011.06.25

Abstract

In this study, we proposed a three-dimensional dynamic model under the diffuse interface description for the single crawling cell. From the developed model, we described the clear evolution processes for crawling neutrophil and assessed the reliable quantitative chemotactic property, which confirmed the high possibility of adequate predictions. To establish the system considering of multiple mechanisms such as, diffusion, chemotaxis, and interaction with surface, a diffuse interface model is employed.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Adler, J. (1969), "Chemoreceptors in bacteria", Science, 166, 1588-1597. https://doi.org/10.1126/science.166.3913.1588
  2. Adler, J. (1973), "A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli", J. Gen. Microbiol., 74, 77-91. https://doi.org/10.1099/00221287-74-1-77
  3. Alber, M., Chen, N., Glimm, T. and Lushnikov, P.M. (2006), "Multiscale dynamics of biological cells with chemotactic interactions: from a discrete stochastic model to a continuous description", Phys. Rev. E, 73, 051901.
  4. Alber, M., Chen, N., Lushnikov, P.M. and Newman, S.A. (2007), "Continuous macroscopic limit of a discrete stochastic model for interaction of living cells", Phys. Rev. Lett., 99, 168102. https://doi.org/10.1103/PhysRevLett.99.168102
  5. Ben-Jacob, E., Cohen, I. and Levine, H. (2000), "Cooperative self-organization of microorganisms", Adv. Phys., 49, 395-554. https://doi.org/10.1080/000187300405228
  6. Berg, H.C. and Brown, D.A. (1972), "Chemotaxis in Escherichia coli analysed by three-dimensional tracking", Nature, 239, 500-504. https://doi.org/10.1038/239500a0
  7. Brenner, M.P., Levitov, L.S. and Budrene, E.O. (1998), "Physical mechanisms for chemotactic pattern formation by bacteria", Biophys. J., 74, 1677-1693. https://doi.org/10.1016/S0006-3495(98)77880-4
  8. Cahn, J.W. (1958), "Free energy of a nonuniform system. 1. Interfacial free energy", J. Chem. Phys., 28, 258-267. https://doi.org/10.1063/1.1744102
  9. Ford, R.M. and Lauffenburger, D.A. (1991), "Analysis of chemotactic bacterial distributions in population migration assays using a mathematical-model applicable to steep or shallow attractant gradients", B. Math. Biol., 53, 721-749. https://doi.org/10.1007/BF02461551
  10. Ford, R.M., Phillips, B.R., Quinn, J.A. and Lauffenburger, D.A. (1991), "Measurement of bacterial random motility and chemotaxis coefficients. 1. Stopped-flow diffusion chamber assay", Biotechnol. Bioeng., 37, 647-660. https://doi.org/10.1002/bit.260370707
  11. Frevert, C.W., Boggy, G., Keenan, T.M. and Folch, A. (2006), "Measurement of cell migration in response to an evolving radial chemokine gradient triggered by a microvalve", Lab Chip., 6, 849-856. https://doi.org/10.1039/b515560f
  12. Jabbarzadeh, E. and Abrams, C.F. (2005), "Chemotaxis and random motility in unsteady chemoattractant fields: a computational study", J. Theor. Biol., 235, 221-232. https://doi.org/10.1016/j.jtbi.2005.01.005
  13. Jeon, J. et al. (2007), "Quantitative analysis of single bacterial chemotaxis using a hydrodynamic focusing channel", KSME, 31, 209-216. https://doi.org/10.3795/KSME-B.2007.31.3.209
  14. Jeon, N.L., Baskaran, H., Dertinger, S.K.W., Whitesides, G.M., Van de Water, L. and Toner, M. (2002), "Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device", Nat. Biotechnol., 20, 826-830. https://doi.org/10.1038/nbt712
  15. Keller, E.F. (1971), "Model for Chemotaxis", J. Theor. Biol., 30, 225-234. https://doi.org/10.1016/0022-5193(71)90050-6
  16. Kim, D. (2009), "Computational analysis of the interfacial effect on electromigration in flip chip solder joints", Microelectron. Eng., 86, 2132-2137. https://doi.org/10.1016/j.mee.2009.03.044
  17. Kim, D. and Lu, W. (2004), "Self-organized nanostructures in multi-phase epilayers", Nanotech., 15, 667-674. https://doi.org/10.1088/0957-4484/15/5/045
  18. Kim, D. and Lu, W. (2006), "Creep flow, diffusion, and electromigration in small scale interconnects", J. Mech. Phys. Solids, 54, 2554-2568. https://doi.org/10.1016/j.jmps.2006.06.001
  19. Kim, D. and Lu, W. (2006), "Three-dimensional model of electrostatically induced pattern formation in thin polymer films", Phys. Rev. B, 73, 035206. https://doi.org/10.1103/PhysRevB.73.035206
  20. Lapidus, R.I. and Schiller, R. (1976), "Model for the chemotactic response of a bacterial population", Biophys. J., 16, 779-789. https://doi.org/10.1016/S0006-3495(76)85728-1
  21. Lauffenburger, D.A., Rothman, C. and Zigmond, S.H. (1983), "Measurement of leukocyte motility and chemotaxis parameters with a linear under-agarose migration assay", J. Immunol., 131, 940-947.
  22. Lewus, P. and Ford, R.M. (2001), "Quantification of random motility and chemotaxis bacterial transport coefficients using individual-cell and population-scale assays", Biotechnol. Bioeng., 75, 292-304. https://doi.org/10.1002/bit.10021
  23. Lu, W. and Kim, D. (2004), "Patterning nanoscale structures by surface chemistry", Nano Lett., 4, 313-316. https://doi.org/10.1021/nl035072d
  24. Lu, W. and Kim, D. (2005), "Engineering nanophase self-assembly with elastic field", Acta Mater., 53, 3689-3694. https://doi.org/10.1016/j.actamat.2005.04.021
  25. Lu, W. and Kim, D. (2006), "Thin-film structures induced by electrostatic field and substrate kinetic constraint", Appl. Phys. Lett., 88, 153116.
  26. Lushnikov, P.M., Chen, N. and Alber, M. (2008), "Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact", Phys. Rev. E, 78, 061904.
  27. Painter, K.J. and Sherratt, J.A. (2003), "Modelling the movement of interacting cell populations", J. Theor. Biol., 225, 327-339. https://doi.org/10.1016/S0022-5193(03)00258-3
  28. Rivero, M.A. (1989), "Transport models for chemotactic cell-populations based on individual cell behavior", Chem. Eng. Sci., 44, 2881-2897. https://doi.org/10.1016/0009-2509(89)85098-5
  29. Robert, D.N., Paul, G.Q. and Richard, L.S. (1975), "Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes", J. Immunol., 115, 1650-1656.
  30. Rot, A. (1993), "Neutrophil attractant activation protein-1 (interleukin-8) induces invitro neutrophil migration by haptotactic mechanism", Eur. J. Immunol., 23, 303-306. https://doi.org/10.1002/eji.1830230150
  31. Song, J.H. and Kim, D. (2009), "Three-dimensional chemotaxis model for a single bacterium", J. Comput. Theor. Nanos., 6, 1687-1693. https://doi.org/10.1166/jctn.2009.1231
  32. Stokes, C.L., Lauffenburger, D.A. and Williams, S.K. (1991), "Migration of individual microvessel Endothelialcells - stochastic-model and parameter measurement", J. Cell Sci., 99, 419-430.
  33. Tharp, W.G., Yadav, R., Irimia, D., Upadhyaya, A., Samadani, A., Hurtado, O., Liu, S.Y., Munisamy, S., Brainard, D.M., Mahon, M.J., Nourshargh, S., van Oudenaarden, A., Toner, M.G. and Poznansky, M.C. (2006), "Neutrophil chemorepulsion in defined interleukin-8 gradients in vitro and in vivo", J. Leukocyte Biol., 79, 539-554. https://doi.org/10.1189/jlb.0905516
  34. Tranquillo, R.T., Zigmond, S.H. and Lauffernburger, D.A. (1988), "Measurement of the chemotaxis coefficient for human-neutrophils in the under-agarose migration assay", Cell Motil. Cytoskel., 11, 1-15. https://doi.org/10.1002/cm.970110102
  35. Wang, Z.A. (2007), "Classical solutions and pattern formation for a volume filling chemotaxis model", Chaos, 17, 037108. https://doi.org/10.1063/1.2766864
  36. Zhang, L., Song, J. and Kim, D. (2010), "A study on cancer-cell invasion based on multi-physics analysis technology", Biochip J., 4, 161-165. https://doi.org/10.1007/s13206-010-4212-y
  37. Zhang, X.W., Chen, J.N. and Osher, S. (2008), "A multiple level set method for modeling grain boundary evolution of polycrystalline materials", Interact. Multiscale Mech., 1, 191-209. https://doi.org/10.12989/imm.2008.1.2.191
  38. Zigmond, S.H. (1977), "Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors", J. Cell Biol., 75, 606-616. https://doi.org/10.1083/jcb.75.2.606