Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- Adler, J. (1969), "Chemoreceptors in bacteria", Science, 166, 1588-1597. https://doi.org/10.1126/science.166.3913.1588
- Adler, J. (1973), "A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli", J. Gen. Microbiol., 74, 77-91. https://doi.org/10.1099/00221287-74-1-77
- Alber, M., Chen, N., Glimm, T. and Lushnikov, P.M. (2006), "Multiscale dynamics of biological cells with chemotactic interactions: from a discrete stochastic model to a continuous description", Phys. Rev. E, 73, 051901.
- Alber, M., Chen, N., Lushnikov, P.M. and Newman, S.A. (2007), "Continuous macroscopic limit of a discrete stochastic model for interaction of living cells", Phys. Rev. Lett., 99, 168102. https://doi.org/10.1103/PhysRevLett.99.168102
- Ben-Jacob, E., Cohen, I. and Levine, H. (2000), "Cooperative self-organization of microorganisms", Adv. Phys., 49, 395-554. https://doi.org/10.1080/000187300405228
- Berg, H.C. and Brown, D.A. (1972), "Chemotaxis in Escherichia coli analysed by three-dimensional tracking", Nature, 239, 500-504. https://doi.org/10.1038/239500a0
- Brenner, M.P., Levitov, L.S. and Budrene, E.O. (1998), "Physical mechanisms for chemotactic pattern formation by bacteria", Biophys. J., 74, 1677-1693. https://doi.org/10.1016/S0006-3495(98)77880-4
- Cahn, J.W. (1958), "Free energy of a nonuniform system. 1. Interfacial free energy", J. Chem. Phys., 28, 258-267. https://doi.org/10.1063/1.1744102
- Ford, R.M. and Lauffenburger, D.A. (1991), "Analysis of chemotactic bacterial distributions in population migration assays using a mathematical-model applicable to steep or shallow attractant gradients", B. Math. Biol., 53, 721-749. https://doi.org/10.1007/BF02461551
- Ford, R.M., Phillips, B.R., Quinn, J.A. and Lauffenburger, D.A. (1991), "Measurement of bacterial random motility and chemotaxis coefficients. 1. Stopped-flow diffusion chamber assay", Biotechnol. Bioeng., 37, 647-660. https://doi.org/10.1002/bit.260370707
- Frevert, C.W., Boggy, G., Keenan, T.M. and Folch, A. (2006), "Measurement of cell migration in response to an evolving radial chemokine gradient triggered by a microvalve", Lab Chip., 6, 849-856. https://doi.org/10.1039/b515560f
- Jabbarzadeh, E. and Abrams, C.F. (2005), "Chemotaxis and random motility in unsteady chemoattractant fields: a computational study", J. Theor. Biol., 235, 221-232. https://doi.org/10.1016/j.jtbi.2005.01.005
- Jeon, J. et al. (2007), "Quantitative analysis of single bacterial chemotaxis using a hydrodynamic focusing channel", KSME, 31, 209-216. https://doi.org/10.3795/KSME-B.2007.31.3.209
- Jeon, N.L., Baskaran, H., Dertinger, S.K.W., Whitesides, G.M., Van de Water, L. and Toner, M. (2002), "Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device", Nat. Biotechnol., 20, 826-830. https://doi.org/10.1038/nbt712
- Keller, E.F. (1971), "Model for Chemotaxis", J. Theor. Biol., 30, 225-234. https://doi.org/10.1016/0022-5193(71)90050-6
- Kim, D. (2009), "Computational analysis of the interfacial effect on electromigration in flip chip solder joints", Microelectron. Eng., 86, 2132-2137. https://doi.org/10.1016/j.mee.2009.03.044
- Kim, D. and Lu, W. (2004), "Self-organized nanostructures in multi-phase epilayers", Nanotech., 15, 667-674. https://doi.org/10.1088/0957-4484/15/5/045
- Kim, D. and Lu, W. (2006), "Creep flow, diffusion, and electromigration in small scale interconnects", J. Mech. Phys. Solids, 54, 2554-2568. https://doi.org/10.1016/j.jmps.2006.06.001
- Kim, D. and Lu, W. (2006), "Three-dimensional model of electrostatically induced pattern formation in thin polymer films", Phys. Rev. B, 73, 035206. https://doi.org/10.1103/PhysRevB.73.035206
- Lapidus, R.I. and Schiller, R. (1976), "Model for the chemotactic response of a bacterial population", Biophys. J., 16, 779-789. https://doi.org/10.1016/S0006-3495(76)85728-1
- Lauffenburger, D.A., Rothman, C. and Zigmond, S.H. (1983), "Measurement of leukocyte motility and chemotaxis parameters with a linear under-agarose migration assay", J. Immunol., 131, 940-947.
- Lewus, P. and Ford, R.M. (2001), "Quantification of random motility and chemotaxis bacterial transport coefficients using individual-cell and population-scale assays", Biotechnol. Bioeng., 75, 292-304. https://doi.org/10.1002/bit.10021
- Lu, W. and Kim, D. (2004), "Patterning nanoscale structures by surface chemistry", Nano Lett., 4, 313-316. https://doi.org/10.1021/nl035072d
- Lu, W. and Kim, D. (2005), "Engineering nanophase self-assembly with elastic field", Acta Mater., 53, 3689-3694. https://doi.org/10.1016/j.actamat.2005.04.021
- Lu, W. and Kim, D. (2006), "Thin-film structures induced by electrostatic field and substrate kinetic constraint", Appl. Phys. Lett., 88, 153116.
- Lushnikov, P.M., Chen, N. and Alber, M. (2008), "Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact", Phys. Rev. E, 78, 061904.
- Painter, K.J. and Sherratt, J.A. (2003), "Modelling the movement of interacting cell populations", J. Theor. Biol., 225, 327-339. https://doi.org/10.1016/S0022-5193(03)00258-3
- Rivero, M.A. (1989), "Transport models for chemotactic cell-populations based on individual cell behavior", Chem. Eng. Sci., 44, 2881-2897. https://doi.org/10.1016/0009-2509(89)85098-5
- Robert, D.N., Paul, G.Q. and Richard, L.S. (1975), "Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes", J. Immunol., 115, 1650-1656.
- Rot, A. (1993), "Neutrophil attractant activation protein-1 (interleukin-8) induces invitro neutrophil migration by haptotactic mechanism", Eur. J. Immunol., 23, 303-306. https://doi.org/10.1002/eji.1830230150
- Song, J.H. and Kim, D. (2009), "Three-dimensional chemotaxis model for a single bacterium", J. Comput. Theor. Nanos., 6, 1687-1693. https://doi.org/10.1166/jctn.2009.1231
- Stokes, C.L., Lauffenburger, D.A. and Williams, S.K. (1991), "Migration of individual microvessel Endothelialcells - stochastic-model and parameter measurement", J. Cell Sci., 99, 419-430.
- Tharp, W.G., Yadav, R., Irimia, D., Upadhyaya, A., Samadani, A., Hurtado, O., Liu, S.Y., Munisamy, S., Brainard, D.M., Mahon, M.J., Nourshargh, S., van Oudenaarden, A., Toner, M.G. and Poznansky, M.C. (2006), "Neutrophil chemorepulsion in defined interleukin-8 gradients in vitro and in vivo", J. Leukocyte Biol., 79, 539-554. https://doi.org/10.1189/jlb.0905516
- Tranquillo, R.T., Zigmond, S.H. and Lauffernburger, D.A. (1988), "Measurement of the chemotaxis coefficient for human-neutrophils in the under-agarose migration assay", Cell Motil. Cytoskel., 11, 1-15. https://doi.org/10.1002/cm.970110102
- Wang, Z.A. (2007), "Classical solutions and pattern formation for a volume filling chemotaxis model", Chaos, 17, 037108. https://doi.org/10.1063/1.2766864
- Zhang, L., Song, J. and Kim, D. (2010), "A study on cancer-cell invasion based on multi-physics analysis technology", Biochip J., 4, 161-165. https://doi.org/10.1007/s13206-010-4212-y
- Zhang, X.W., Chen, J.N. and Osher, S. (2008), "A multiple level set method for modeling grain boundary evolution of polycrystalline materials", Interact. Multiscale Mech., 1, 191-209. https://doi.org/10.12989/imm.2008.1.2.191
- Zigmond, S.H. (1977), "Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors", J. Cell Biol., 75, 606-616. https://doi.org/10.1083/jcb.75.2.606